Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
1.
Gen Comp Endocrinol ; 277: 73-81, 2019 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-30391243

RESUMO

The melanocortin-3 receptor (MC3R) is a member of the G protein-coupled receptor superfamily that plays a critical role in controlling energy balance and metabolism. Although pharmacological characterization of MC3R has been reported previously in several other species, there is no report on the MC3R from giant panda (Ailuropoda melanoleuca). This ancient species is known as a 'living fossil' and is among the most endangered animals in the world. Giant panda survive on a specialized diet of bamboo despite possessing a typical carnivorous digestive system. We report herein the molecular cloning and pharmacological characterization of amMC3R. Homology and phylogenetic analysis showed that amMC3R was highly homologous (>85%) to several other mammalian MC3Rs. Using human MC3R (hMC3R) as a control, the binding of five agonists, [Nle4, D-Phe7]-α-melanocyte stimulating hormone (NDP-MSH), α-, ß-, γ-, and D-Trp8-γ-MSH, was investigated, as well as Gs-cAMP and pERK1/2 signaling. The results showed that amMC3R bound NDP- and D-Trp8-γ-MSH with the highest affinity, followed by α-, ß-, and γ-MSH, with the same rank order as hMC3R. When stimulated with agonists, amMC3R displayed increased intracellular cAMP and activation of pERK1/2. These data suggest that the cloned amMC3R was a functional receptor. The availability of amMC3R and knowledge of its pharmacological functions will assist further investigation of its role in controlling energy balance and metabolism.


Assuntos
Receptor Tipo 3 de Melanocortina/metabolismo , Ursidae/metabolismo , Sequência de Aminoácidos , Animais , Sequência de Bases , AMP Cíclico/metabolismo , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Células HEK293 , Humanos , Ligantes , Fosforilação , Filogenia , Receptor Tipo 3 de Melanocortina/agonistas , Receptor Tipo 3 de Melanocortina/química , Transdução de Sinais
2.
Gen Comp Endocrinol ; 277: 90-103, 2019 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-30905760

RESUMO

The melanocortin-3 receptor (MC3R) is known to be involved in regulation of energy homeostasis, regulating feed efficiency and nutrient partitioning in mammals. Its physiological roles in non-mammalian vertebrates, especially economically important aquaculture species, are not well understood. Channel catfish (Ictalurus punctatus) is the main freshwater aquaculture species in North America. In this study, we characterized the channel catfish MC3R. The mc3r of channel catfish encoded a putative protein (ipMC3R) of 367 amino acids. We transfected HEK293T cells with ipMC3R plasmid for functional studies. Five agonists, including adrenocorticotropin, α-melanocyte stimulating hormone (α-MSH), ß-MSH, [Nle4, D-Phe7]-α-MSH, and D-Trp8-γ-MSH, were used in the pharmacological studies. Our results showed that ipMC3R bound ß-MSH with higher affinity and D-Trp8-γ-MSH with lower affinity compared with human MC3R. All agonists could stimulate ipMC3R and increase intracellular cAMP production with sub-nanomolar potencies. The extracellular signal-regulated kinases 1 and 2 (ERK1/2) activation could also be triggered by ipMC3R. The ipMC3R exhibited constitutive activities in both cAMP and ERK1/2 pathways, and Agouti-related protein served as an inverse agonist at ipMC3R, potently inhibiting the high basal cAMP level. Moreover, we showed that melanocortin receptor accessory protein 2 (MRAP2) preferentially modulated ipMC3R in cAMP production rather than ERK1/2 activation. Our study will assist further investigation of the physiological roles of the ipMC3R, especially in energy homeostasis, in channel catfish.


Assuntos
Metabolismo Energético , Homeostase , Ictaluridae/metabolismo , Receptor Tipo 3 de Melanocortina/metabolismo , Sequência de Aminoácidos , Animais , Sequência de Bases , Cromossomos/genética , AMP Cíclico/metabolismo , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Células HEK293 , Homeostase/efeitos dos fármacos , Humanos , Ligantes , Filogenia , Receptor Tipo 3 de Melanocortina/química , Receptor Tipo 3 de Melanocortina/genética , Análise de Sequência de DNA , Transdução de Sinais , Sintenia/genética
3.
Cell Mol Life Sci ; 74(7): 1335-1345, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-27853832

RESUMO

The efficiency of drug research and development has paradoxically declined over the last decades despite major scientific and technological advances, promoting new cost-effective strategies such as drug repositioning by systematic screening for new actions of known drugs. Here, we performed a screening for positive allosteric modulators (PAMs) at melanocortin (MC) receptors. The non-steroidal anti-inflammatory drug fenoprofen, but not the similar compound ibuprofen, presented PAM activity at MC3, MC4, and MC5 receptors. In a model of inflammatory arthritis, fenoprofen afforded potent inhibition while ibuprofen was nearly inactive. Fenoprofen presented anti-arthritic actions on cartilage integrity and synovitis, effects markedly attenuated in Mc3r-/- mice. Fenoprofen displayed pro-resolving properties promoting macrophage phagocytosis and efferocytosis, independently of cyclooxygenase inhibition. In conclusion, combining repositioning with advances in G-protein coupled receptor biology (allosterism) may lead to potential new therapeutics. In addition, MC3 PAMs emerged as a viable approach to the development of innovative therapeutics for joint diseases.


Assuntos
Regulação Alostérica/efeitos dos fármacos , Anti-Inflamatórios não Esteroides/farmacologia , Reposicionamento de Medicamentos , Fenoprofeno/farmacologia , Receptor Tipo 3 de Melanocortina/metabolismo , Animais , Anti-Inflamatórios não Esteroides/uso terapêutico , Artrite/tratamento farmacológico , Artrite/etiologia , Células CHO , Cricetinae , Cricetulus , Modelos Animais de Doenças , Fenoprofeno/uso terapêutico , Articulações/metabolismo , Articulações/patologia , Macrófagos/citologia , Macrófagos/imunologia , Macrófagos/metabolismo , Masculino , Melanocortinas/análise , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Peritonite/induzido quimicamente , Peritonite/tratamento farmacológico , Peritonite/patologia , Fagocitose/efeitos dos fármacos , Prostaglandina-Endoperóxido Sintases/química , Prostaglandina-Endoperóxido Sintases/metabolismo , Receptor Tipo 3 de Melanocortina/química , Receptor Tipo 3 de Melanocortina/deficiência , Receptor Tipo 3 de Melanocortina/genética
4.
Biochemistry ; 56(32): 4201-4209, 2017 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-28715181

RESUMO

Systematic N-methylated derivatives of the melanocortin receptor ligand, SHU9119, lead to multiple binding and functional selectivity toward melanocortin receptors. However, the relationship between N-methylation-induced conformational changes in the peptide backbone and side chains and melanocortin receptor selectivity is still unknown. We conducted comprehensive conformational studies in solution of two selective antagonists of the third isoform of the melanocortin receptor (hMC3R), namely, Ac-Nle-c[Asp-NMe-His6-d-Nal(2')7-NMe-Arg8-Trp9-Lys]-NH2 (15) and Ac-Nle-c[Asp-His6-d-Nal(2')7-NMe-Arg8-NMe-Trp9-NMe-Lys]-NH2 (17). It is known that the pharmacophore (His6-DNal7-Arg8-Trp9) of the SHU-9119 peptides occupies a ß II-turn-like region with the turn centered about DNal7-Arg8. The analogues with hMC3R selectivity showed distinct differences in the spatial arrangement of the Trp9 side chains. In addition to our NMR studies, we also carried out molecular-level interaction studies of these two peptides at the homology model of hMC3R. Earlier chimeric human melanocortin 3 receptor studies revealed insights regarding the binding and functional sites of hMC3R selectivity. Upon docking of peptides 15 and 17 to the binding pocket of hMC3R, it was revealed that Arg8 and Trp9 side chains are involved in a majority of the interactions with the receptor. While Arg8 forms polar contacts with D154 and D158 of hMC3R, Trp9 utilizes π-π stacking interactions with F295 and F298, located on the transmembrane domain of hMC3R. It is hypothesized that as the frequency of Trp9-hMC3R interactions decrease, antagonistic activity increases. The absence of any interactions of the N-methyl groups with hMC3R suggests that their primary function is to modulate backbone conformations of the ligands.


Assuntos
Hormônios Estimuladores de Melanócitos/química , Simulação de Acoplamento Molecular , Receptor Tipo 3 de Melanocortina/antagonistas & inibidores , Receptor Tipo 3 de Melanocortina/química , Sítios de Ligação , Humanos , Receptor Tipo 3 de Melanocortina/genética , Receptor Tipo 3 de Melanocortina/metabolismo , Relação Estrutura-Atividade
5.
Zh Evol Biokhim Fiziol ; 51(4): 243-50, 2015.
Artigo em Russo | MEDLINE | ID: mdl-26547948

RESUMO

The activity of the hypothalamic-pituitary-thyroid (HPT) axis is controlled by the brain neurotransmitter systems, including the melanocortin signaling system. Pharmacological inhibition of type 4 melanocortin receptor (M4R) leads to disruption of the functioning of HPT axis and to reduction of the level of thyroid hormones. At the same time, the data on how prolonged inhibition of M4R affects this axis and on its role in regulation of M3R are absent. The relationship between the thyroid status and the activity of 1B-subtype 5-hydroxytryptamine receptor (5-HT1BR) is scarcely explored. The aim of this work to study the effects of chronic inhibition of M3R, M4R and 5-HT1BR induced by immunization of rats with BSA-conjugated peptide derived from the extracellular regions of these receptors on the thyroid status and the activity of thyroid stimulating hormone (TSH)-sensitive adenylyl cyclase signaling system (ACSS) in the thyroid glarid (TG) of the immunized animals. In rats immunized with the peptides K-[TSLHL WNRSSHGLHG11-25]-A of M4R, A[PTNPYCICTTAH269-280]-A of M3R and. [QAKAEE-EVSEC(Acm)-VVNTDH189-205]-A of 5-HT1BR levels of thyroid hormones such as fT4, tT4 and tT3 were significantly reduced. In rats immunized with M4R and M3R peptides, an increase of TSH was detected whereas in the animals immunized with 5-HT1BR peptide the level of TSH, on the contrary, was reduced. In the TG of rats immunized with M4R and M3R peptides, the stimulatory effects of hormones (TSH, PA-CAP-3 8) and GppNHp on adenylyl cyclase activity were attenuated, and the changes were most pronounced in the case M4R peptide immunization. After immunization with 5-HT1BR peptide the stimulatory effects of TSH, PACAP-38 and GppNHp were retained. Thus, the main cause of thyroid hormones deficit in rats immunized with M4R and M3R peptides was the decreased sensitivity of ACSS thyrocytes to TSH, whereas in rats iimunized with 5-HT1BR peptide the deficit of thyroid hormones was associated with decreased level of TSH. Our data on the negative impact of long-term immunization of rats with BSA-conjugated peptides derived from the extracellular regions of M4R, M3R.and 5-HT1BR on their thyroid status is a strong argument in favor of participation of these receptors and intracellular signaling pathways associated with them in the regulation of HPT axis.


Assuntos
Peptídeos/administração & dosagem , Receptor Tipo 3 de Melanocortina/administração & dosagem , Receptor Tipo 4 de Melanocortina/administração & dosagem , Receptor 5-HT1B de Serotonina/administração & dosagem , Adenilil Ciclases , Animais , Peptídeos/química , Peptídeos/imunologia , Ratos , Receptor Tipo 3 de Melanocortina/química , Receptor Tipo 3 de Melanocortina/imunologia , Receptor Tipo 4 de Melanocortina/química , Receptor Tipo 4 de Melanocortina/imunologia , Receptor 5-HT1B de Serotonina/química , Serotonina/imunologia , Serotonina/metabolismo , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/imunologia , Glândula Tireoide/efeitos dos fármacos , Glândula Tireoide/imunologia , Tri-Iodotironina/metabolismo
6.
Bull Exp Biol Med ; 156(5): 658-62, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24770752

RESUMO

The ligand-recognizing part of G protein-coupled receptors consists of their extracellular loops and N-terminal domain. Identification of these sites is essential for receptor mapping and for the development and testing of new hormone system regulators. The peptides corresponding by their structure to extracellular loop 2 of serotonin 1B/1D receptor (peptide 1), extracellular loop 3 of melanocortin 3 receptor (peptide 2), and N-terminal domain of melanocortin 4 (peptide 3) were synthesized by the solid-phase method. In synaptosomal membranes isolated from rat brain, peptide 1 (10(-5)-10(-4) M) attenuated the effects of 5-nonyloxytryptamine (selective agonist of serotonin 1B/1D receptor) and to a lesser extent serotonin and 5-methoxy-N,N-dimethyltryptamine acting on all the subtypes of serotonin receptor 1. Peptide 2 (10(-5)-10(-4) M) significantly reduced the adenylate cyclase-stimulating effect of γ-melanocyte-stimulating hormone (agonist of melanocortin receptor 3), but had no effect on the adenylate cyclase effect of THIQ (agonist melanocortin receptor 4). Peptide 3 reduced the adenylate cyclase-stimulating effects of THIQ and α-melanocyte-stimulating hormone (non-selective agonist of melanocortin receptors 3 and 4), but did not modulate the effect of γ-melanocyte-stimulating hormone. The effect of peptide 3 was weaker: it was observed at peptide 3 concentration of 10(-4) M. Peptides 1-3 did no change the adenylate cyclase-modulating effects of hormones acting through non-homologous receptors. Thus, the synthesized peptides specifically inhibited the regulatory effects of hormones acting through homologous receptors. This suggests that the corresponding extracellular domains are involved in ligand recognition and binding and determine functional activity of the receptor.


Assuntos
Adenilil Ciclases/metabolismo , Encéfalo/enzimologia , Fragmentos de Peptídeos/farmacologia , Receptor 5-HT1B de Serotonina/metabolismo , Receptor 5-HT1D de Serotonina/metabolismo , Antagonistas do Receptor 5-HT1 de Serotonina/farmacologia , Animais , Masculino , Estrutura Terciária de Proteína , Ratos Wistar , Receptor Tipo 3 de Melanocortina/química , Receptor Tipo 3 de Melanocortina/metabolismo , Receptor Tipo 4 de Melanocortina/química , Receptor Tipo 4 de Melanocortina/metabolismo , Receptor 5-HT1B de Serotonina/química , Receptor 5-HT1D de Serotonina/química , Agonistas do Receptor 5-HT1 de Serotonina/farmacologia , Sinaptossomos/efeitos dos fármacos , Sinaptossomos/enzimologia , alfa-MSH/farmacologia
7.
Tsitologiia ; 56(11): 850-7, 2014.
Artigo em Russo | MEDLINE | ID: mdl-25707212

RESUMO

One of the approaches to study the role of the brain hormonal signaling systems in the regulation of biochemical and physiological processes is their shutdown using the antibodies generated to peptides corresponding to extracellular regions of receptors. The brain type 3 melanocortin receptors (M3R) play an important role in the central regulation of the metabolism and the endocrine system. However, the influence of prolonged inhibition of M3R on energy metabolism, insulin resistance, and thyroid gland (TG) function is practically not studied. The aim of the study was to investigate the influence of prolonged repeated immunization of male rats with the BSA-conjugated peptide Ala-[Pro-Thr-Asn-Pro-Tyr-Cys-Ile-Cys-Thr-Thr-Ala-His269-280]-Ala (A[269- 280]A) corresponding to the third extracellular loop of M3R on their metabolic parameters and functional activity of TG. 9 months after the first immunization, the weight of rats was reduced and after 12-13 months was significantly lower than in controls. The weight of abdominal and brown adipose tissues, on the contrary, increased. At the same timeline there was an increase in the fasting glucose and insulin levels, and increase of the HOMA-IR index (by 75%) indicating that immunized animals develop insulin resistance. The rats have increased glucose utilization due to an increase of insulin production by pancreatic ß-cells. 12 months after the first immunization, the increase of the triglycerides level (by 74%) and the ratio of LDL- and HDL-cholesterol (by 36%) were revealed. 13 months after the start of immunization, the levels of free and total thyroxine and total triiodothyronine significantly decreased. In the TG plasma membranes of immunized rats the weakening adenylyl cyclase stimulating effect of thyroid-stimulating hormone was detected. Thus, long-term decrease in the bra- in M3R activity due to repeated immunization of rats with BSA-conjugated peptide A[269-280]A induces the disturbances of the peripheral metabolism and TG function.


Assuntos
Sistema Hipotálamo-Hipofisário/metabolismo , Peptídeos/imunologia , Sistema Hipófise-Suprarrenal/metabolismo , Receptor Tipo 3 de Melanocortina/química , Glândula Tireoide/metabolismo , Gordura Abdominal/efeitos dos fármacos , Tecido Adiposo Marrom/efeitos dos fármacos , Sequência de Aminoácidos , Animais , Glicemia/metabolismo , Peso Corporal/efeitos dos fármacos , Sistema Hipotálamo-Hipofisário/efeitos dos fármacos , Sistema Hipotálamo-Hipofisário/imunologia , Sistema Hipotálamo-Hipofisário/patologia , Imunização , Insulina/metabolismo , Células Secretoras de Insulina/efeitos dos fármacos , Células Secretoras de Insulina/metabolismo , Masculino , Dados de Sequência Molecular , Peptídeos/administração & dosagem , Peptídeos/síntese química , Sistema Hipófise-Suprarrenal/efeitos dos fármacos , Sistema Hipófise-Suprarrenal/imunologia , Sistema Hipófise-Suprarrenal/patologia , Estrutura Secundária de Proteína , Ratos , Ratos Wistar , Receptor Tipo 3 de Melanocortina/imunologia , Soroalbumina Bovina/química , Soroalbumina Bovina/imunologia , Glândula Tireoide/efeitos dos fármacos , Glândula Tireoide/imunologia , Glândula Tireoide/patologia , Tiroxina/metabolismo
8.
Domest Anim Endocrinol ; 74: 106507, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32841887

RESUMO

The melanocortin-3 receptor (MC3R) is a G protein-coupled receptor and potentially important in production traits. Three naturally occurring mutations (M54L, G104S, and L151R) in chicken MC3R (cMC3R) were reported previously to be associated with production traits. Here, we inserted the full-length cMC3R coding sequence into pcDNA3.1(+) and generated the 3 mutations by site-directed mutagenesis. The total and cell surface expression of the receptors was measured by flow cytometry. We analyzed the pharmacological characteristics, including binding and cyclic adenosine monophosphate (cAMP) and mitogen-activated protein kinase (MAPK) signaling, using 6 ligands ([Nle4, D-Phe7]-α-melanocyte stimulating hormone (MSH), α-, ß-, γ-, and D-Trp8-γ-MSHs, and agouti-related peptide). All mutants had similar total and cell surface expression as the wild-type (WT) cMC3R. M54L had similar pharmacological properties as the WT cMC3R. G104S did not exhibit any specific binding but had minimal response to α-, ß-, γ-, and D-Trp8-γ-MSH, although it generated 24% WT response when stimulated by NDP-MSH. Although L151R had normal binding, the responses to agonists were reduced to approximately 25% of that of the WT. In MAPK signaling, all 3 mutants showed significantly increased agonist-stimulated phosphorylation of extracellular signal-regulated protein kinases 1/2, indicating the existence of biased signaling at G104S and L151R. In summary, our studies demonstrated that although all 3 mutations are significantly associated with production traits, only G104S and L151R had severe defects in receptor pharmacology. How M54L might cause production trait differences remains to be investigated.


Assuntos
Galinhas/genética , Mutação/genética , Receptor Tipo 3 de Melanocortina/genética , Receptor Tipo 3 de Melanocortina/fisiologia , Sequência de Aminoácidos , Animais , Membrana Celular/metabolismo , AMP Cíclico/metabolismo , Expressão Gênica , Células HEK293 , Humanos , Sistema de Sinalização das MAP Quinases/fisiologia , Hormônios Estimuladores de Melanócitos/metabolismo , Ligação Proteica , Receptor Tipo 3 de Melanocortina/química , Transdução de Sinais
9.
J Recept Signal Transduct Res ; 30(6): 444-53, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21091037

RESUMO

Melanocortin receptors (MCR) play an important role in the regulation of energy balance and autonomic function. In the present studies, we used active immunization against peptide sequences from the first and the third extracellular loop (EL1 and EL3) of the MC3R to generate selective antibodies (Abs) against this MCR subtype in rats. Immunization with the EL1 peptide resulted in Abs that enhanced the effects of the endogenous ligand α-melanocyte-stimulating hormone (α-MSH), whereas immunization with the EL3 peptide resulted in Abs acting as non-competitive antagonists. The phenotype of immunized rats chronically instrumented with telemetry transducers was studied under four different conditions: a high-fat diet was followed by standard lab chow, by fasting, and finally by an intraperitoneal injection of lipopolysaccharide (LPS). Under high-fat diet, food intake and body weight were higher in the EL3 than in the EL1 or the control group. Blood pressure was increased in EL3 rats and locomotor activity was reduced. Plasma concentrations of triglycerides, insulin, and leptin tended to rise in the EL3 group. After switching to standard lab chow, the EL1 group showed a small significant increase in blood pressure that was more pronounced and associated with an increase in heart rate during food restriction. No differences between the EL1 or the EL3 group were observed after LPS injection. These results show that immunization against the MC3R resulted in the production of Abs with positive or negative allosteric properties. The presence of such Abs induced small changes in metabolic and cardiovascular parameters.


Assuntos
Anticorpos/imunologia , Sistema Nervoso Autônomo/fisiologia , Metabolismo Energético/fisiologia , Receptor Tipo 3 de Melanocortina/química , Receptor Tipo 3 de Melanocortina/imunologia , Animais , Peso Corporal/imunologia , AMP Cíclico/metabolismo , Dieta , Células HEK293 , Humanos , Masculino , Peptídeos/genética , Peptídeos/imunologia , Conformação Proteica , Ratos , Ratos Sprague-Dawley , Receptor Tipo 3 de Melanocortina/genética , Telemetria
10.
Biochemistry ; 48(41): 9775-84, 2009 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-19743876

RESUMO

The melanocortin receptor (MCR) subtype family is a member of the GPCR superfamily, and each of them has a different pharmacological profile with regard to the relative potency of the endogenous and synthetic melanocortin peptides. Alpha-MSH and ACTH are endogenous nonselective agonists for MC1R, MC3R, MC4R, and MC5R. In this study, we examined the role of Phe(7) in ACTH on human (h) MC1R, MC3R, and MC4R binding and signaling. Our results indicate that substitution of Phe(7) with d-Nal(2')(7) in ACTH1-24 yields a pharmacological profile different from that for substitution of Phe(7) with d-Nal(2')(7) in MSH in hMC1R, hMC3R, and hMC4R. N-d-Nal(2')(7)-ACTH1-24 is an agonist at hMC3R and hMC4R which did not change the peptide from an agonist to an antagonist at hMC3R and hMC4R. Further experiments indicate that N-d-Nal(2')(7)-ACTH1-17 is the minimal peptide required for hMC3R and hMC4R activation. Single-amino acid substitution studies of d-Nal(2')(7)-ACTH1-17 indicate that amino acid residues 15-17 in N-d-Nal(2')(7)-ACTH1-17 are crucial for hMC3R and hMC4R activation. Substitutions of these amino acid residues reduced or abolished agonist activity at hMC3R and hMC4R. Conformational studies revealed a new beta-turn (Arg(8)-Trp(9)-Gly(10)-Lys(11)) in N-d-Nal(2')(7)-ACTH1-17, compared to the beta-turn-like structure at NDP-alpha-MSH (His(6)-d-Phe(7)-Arg(8)-Trp(9)). Our results suggest that NDP-alpha-MSH and N-d-Nal(2')(7)-ACTH1-17 do not share the same binding site; the highly basic C-terminal fragment (Lys(15)-Lys(16)-Arg(17)) of N-d-Nal(2')(7)-ACTH1-17 induced a new beta-turn, and this shift contributed the selective agonist activity at hMC3R and hMC4R.


Assuntos
Hormônio Adrenocorticotrópico/análogos & derivados , Hormônio Adrenocorticotrópico/química , Receptor Tipo 1 de Melanocortina/química , Receptor Tipo 3 de Melanocortina/química , Receptor Tipo 4 de Melanocortina/química , Receptores de Melanocortina/metabolismo , Hormônio Adrenocorticotrópico/metabolismo , Sequência de Aminoácidos , Substituição de Aminoácidos , Sítios de Ligação , Regulação da Expressão Gênica , Cinética , Modelos Moleculares , Dados de Sequência Molecular , Fragmentos de Peptídeos/química , Conformação Proteica , Receptor Tipo 1 de Melanocortina/genética , Receptor Tipo 1 de Melanocortina/metabolismo , Receptor Tipo 3 de Melanocortina/genética , Receptor Tipo 3 de Melanocortina/metabolismo , Receptor Tipo 4 de Melanocortina/genética , Receptor Tipo 4 de Melanocortina/metabolismo , Receptores de Melanocortina/química , Receptores de Melanocortina/genética
11.
J Med Chem ; 62(5): 2738-2749, 2019 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-30741545

RESUMO

The centrally expressed melanocortin-3 and melanocortin-4 receptors (MC3R and MC4R, respectively) are established targets to treat diseases of positive- and negative-energy homeostasis. We previously reported [ Doering , S. R. ; J. Med. Chem. 2017 , 60 , 4342 - 4357 ] mixture-based positional scanning approaches to identify dual MC3R agonist and MC4R antagonist tetrapeptides. Herein, 46 tetrapeptides were chosen for MC3R agonist screening selectivity profiles, synthesized, and pharmacologically characterized at the mouse melanocortin-1, -3, -4, and -5 receptors. Substitutions to the tetrapeptide template were selected solely based on MC3R agonist potency from the mixture-based screen. This study resulted in the discovery of compound 42 (Ac-Val-Gln-(pI)DPhe-DTic-NH2), a full MC3R agonist that is 100-fold selective for the MC3R over the µM MC4R partial agonist pharmacology. This compound represents a first-in-class MC3R selective agonist. This ligand will serve as a useful in vivo molecular probe for the investigation of the roles of the MC3R and MC4R in diseases of dysregulated energy homeostasis.


Assuntos
Descoberta de Drogas , Sondas Moleculares , Receptor Tipo 3 de Melanocortina/agonistas , Receptor Tipo 4 de Melanocortina/agonistas , Animais , Camundongos , Polifarmacologia , Receptor Tipo 3 de Melanocortina/química , Receptor Tipo 4 de Melanocortina/química , Relação Estrutura-Atividade
12.
Gene ; 717: 143987, 2019 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-31362037

RESUMO

To improve the accuracy and genetic progress of blue fox breeding, the relationships between genetic polymorphisms and growth and reproductive traits of the blue fox were investigated. MC4R, MC3R, INHA and INHBA were selected as candidate genes for molecular evolution and statistical analyses. Single-factor variance analyses showed that the MC4R (g.267C > T, g.423C > T, and g.731C > A) and MC3R (g.677C > T) genotypes had significant impacts on body weight, chest circumference, abdominal perimeter and body mass index (BMI) (P < 0.05) in blue fox. The MC4R and MC3R combined genotypes had significant effects on the body weight and abdominal circumference. The different genotypes of INHA g.75G > A had significant effects on female fecundity, whereas the different genotypes of INHBA g.404G > T and g.467G > T and the INHA and INHBA combined genotypes had significant effects on male fecundity. The proteins encoded by the open reading frames (ORFs) of different polymorphic loci were predicted and analysed. The aims of this study were to identify genetic markers related to growth and reproduction in the blue fox and to provide an efficient, economical and accurate theoretical approach for auxiliary fox breeding.


Assuntos
Raposas/crescimento & desenvolvimento , Raposas/genética , Polimorfismo de Nucleotídeo Único , Reprodução/genética , Animais , Tamanho Corporal/genética , Peso Corporal/genética , China , Evolução Molecular , Feminino , Raposas/fisiologia , Marcadores Genéticos , Subunidades beta de Inibinas/química , Subunidades beta de Inibinas/genética , Inibinas/química , Inibinas/genética , Desequilíbrio de Ligação , Masculino , Mutação , Receptor Tipo 3 de Melanocortina/química , Receptor Tipo 3 de Melanocortina/genética , Receptor Tipo 4 de Melanocortina/química , Receptor Tipo 4 de Melanocortina/genética
13.
J Med Chem ; 51(2): 187-95, 2008 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-18088090

RESUMO

A variety of dicarboxylic acid linkers introduced between the alpha-amino group of Pro(6) and the -amino group of Lys(10) of the cyclic lactam alpha-melanocyte-stimulating hormone (alpha-MSH)-derived Pro(6)-D-Phe(7)/D-Nal(2')(7)-Arg(8)-Trp(9)-Lys(10)-NH2 pentapeptide template lead to nanomolar range and selective hMC3R agonists and antagonists. Replacement of the Pro(6) residue and the dicarboxylic acid linker with 2,3-pyrazine-dicarboxylic acid furnished a highly selective nanomolar range hMC3R partial agonist (analogue 12, c[CO-2,3-pyrazine-CO-D-Phe-Arg-Trp-Lys]-NH2, EC50 = 27 nM, 70% max cAMP) and an hMC3R antagonist (analogue 13, c[CO-2,3-pyrazine-CO-D-Nal(2')-Arg-Trp-Lys]-NH2, IC50 = 23 nM). Modeling experiments suggest that 2,3-pyrazinedicarboxylic acid stabilizes a beta-turn-like structure with the D-Phe/D-Nal(2') residues, which explains the high potency of the corresponding peptides. Placement of a Nle residue in position 6 produced a hMC3R/hMC5R antagonist (analogue 15, c[CO-(CH 2)2-CO-Nle-D-Nal(2')-Arg-Trp-Lys]-NH2, IC50 = 12 and 17 nM, respectively), similarly to the previously described cyclic gamma-melanocyte-stimulating hormone (gamma-MSH)-derived hMC3R/hMC5R antagonists. These newly developed melanotropins will serve as critical biochemical tools for elucidating the full spectrum of functions performed by the physiologically important melanocortin-3 receptor.


Assuntos
Lactamas/síntese química , Peptídeos Cíclicos/síntese química , Receptor Tipo 3 de Melanocortina/agonistas , Receptor Tipo 3 de Melanocortina/antagonistas & inibidores , alfa-MSH/análogos & derivados , alfa-MSH/síntese química , Ligação Competitiva , Linhagem Celular , AMP Cíclico/biossíntese , Humanos , Lactamas/farmacologia , Modelos Moleculares , Peptídeos Cíclicos/química , Peptídeos Cíclicos/farmacologia , Ensaio Radioligante , Receptor Tipo 3 de Melanocortina/química , Relação Estrutura-Atividade , alfa-MSH/farmacologia
14.
Regul Pept ; 142(3): 111-22, 2007 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-17376547

RESUMO

In addition to its well known stimulation of cAMP production, the human melanocortin type 4 (hMC4) receptor recently has been shown to mediate p44/42 MAPK activation. This finding opens new questions about the structural and signaling mechanisms that connect the receptor to this alternate cell signaling pathway. Point mutants in the hMC4 receptor that have been associated with obesity were constructed and transfected into HEK 293 cells. Functional analyses then were done to determine if these mutations would similarly impact cAMP formation and p44/42 MAPK signaling. Whereas a D90N mutation in the second transmembrane domain and a D298A mutation in the seventh transmembrane domain impaired both cAMP formation and p44/42 MAPK activation, a more conservative D298N mutation retained cAMP formation but abolished p44/42 MAPK activation. The D298N mutation identified, for the first time, differential structural requirements of the hMC4 receptor for activation of the cAMP and p44/42 MAPK pathways. Furthermore, functional characterizations of a series of chimeric receptors combining the hMC4 receptor and the hMC3 subtype, a receptor that does not couple to p44/42 MAPK activation despite stimulating adenylyl cyclase, indicate that the hMC4 cytoplasmic tail is a necessary structural element for p44/42 MAPK signaling. Subsequent investigation of the signaling requirements for p44/42 MAPK activation demonstrated that the adenylyl cyclase inhibitor 2', 5'-dideoxyadenosine blocked agonist-induced p44/42 MAPK activation, but the PKA inhibitor Rp cAMPS did not. Taken together, these data indicate that cAMP is required, but not sufficient for p44/42 MAPK activation and suggest structural elements required for hMC4 receptor signaling.


Assuntos
Sistema de Sinalização das MAP Quinases , Receptor Tipo 4 de Melanocortina/química , Receptor Tipo 4 de Melanocortina/metabolismo , Inibidores de Adenilil Ciclases , Adenilil Ciclases/metabolismo , Substituição de Aminoácidos , Sequência de Bases , Linhagem Celular , AMP Cíclico/metabolismo , Primers do DNA/genética , Didesoxiadenosina/análogos & derivados , Didesoxiadenosina/farmacologia , Humanos , Técnicas In Vitro , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Mutagênese Sítio-Dirigida , Obesidade/genética , Obesidade/metabolismo , Receptor Tipo 3 de Melanocortina/química , Receptor Tipo 3 de Melanocortina/genética , Receptor Tipo 3 de Melanocortina/metabolismo , Receptor Tipo 4 de Melanocortina/genética , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo
15.
J Med Chem ; 49(6): 1946-52, 2006 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-16539382

RESUMO

A series of cyclic lactam analogues of gamma-MSH (H-Tyr1-Val2-Met3-Gly4-His5-Phe6-Arg7-Trp8-Asp9-Arg10-Phe11-Gly12-OH) with a bulky hydrophobic residue in the direct proximity to the pharmacophore (Xaa-D-Phe/D-Nal(2')-Arg-Trp) were designed and synthesized by solid-phase methods. A variety of amino acids with a broad range of hydrophobic/hydrophilic properties was introduced in position 5 to further explore their complementary role in receptor selectivity. Biological evaluation of these peptides revealed several analogues with potent hMC3R agonist and hMC3R/hMC5R antagonist activities, and good receptor selectivity. Analogue 4, c[Nle-Arg-D-Phe-Arg-Trp-Glu]-NH2, was found to be a very potent and selective hMC3R agonist (EC50=1.2 nM, 112% act). In addition, analogue 13, c[Nle-Val-D-Nal(2')-Arg-Trp-Glu]-NH2, was identified as an hMC3R/hMC5R antagonist with the best selectivity against the hMC4R in this series (pA2(hMC3R)=8.4; pA2(hMC5R)=8.7). These results indicate the significance of steric factors in melanocortin receptor selectivity and suggest that introduction of bulky residues in the direct proximity to the melanocortin pharmacophore is an effective approach to design of novel hMC3R and hMC5R selective ligands.


Assuntos
Lactamas/síntese química , Peptídeos Cíclicos/síntese química , Receptor Tipo 3 de Melanocortina/agonistas , Receptor Tipo 3 de Melanocortina/antagonistas & inibidores , Receptores da Corticotropina/antagonistas & inibidores , gama-MSH/química , Adenilil Ciclases/biossíntese , Ligação Competitiva , Linhagem Celular , Desenho de Fármacos , Humanos , Interações Hidrofóbicas e Hidrofílicas , Lactamas/química , Lactamas/farmacologia , Modelos Moleculares , Peptídeos Cíclicos/química , Peptídeos Cíclicos/farmacologia , Ensaio Radioligante , Receptor Tipo 3 de Melanocortina/química , Receptores da Corticotropina/química , Receptores de Melanocortina , Relação Estrutura-Atividade
16.
Peptides ; 27(6): 1443-50, 2006 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-16414147

RESUMO

Melanocortins possess strong anti-inflammatory effects acting in the central nervous system via inhibition of the production of nitric oxide (NO) during brain inflammation. To shed more light into the role of melanocortin (MC) receptor subtypes involved we synthesized and evaluated some novel peptides, modified in the melanocyte-stimulating hormone (MSH) core structure, natural MCs and known MC receptor selective peptides - MS05, MS06. Since the study included both selective, high affinity binders and the novel peptides, it was possible to do the correlation analysis of binding activities and the NO induction-related anti-inflammatory effect of the peptides. beta-MSH, gamma1-MSH, gamma2-MSH, alpha-MSH, MS05, Ac-MS06 and Ac-[Ser12]MS06 caused dose dependent inhibition of the lipopolysaccharide (LPS)-induced increase of NO overproduction in the mice forebrain whereas MSH core modified peptides Ac-[Asp9,Ser12]MS06, [Asp9]alpha-MSH and [Asp16]beta-MSH were devoid of this effect in doses up to 10 nmol per mouse. When the minimal effective dose required for inhibition of NO production was correlated with the in vitro binding activity to MC receptor subtypes a strong and significant correlation was found for the MC3 receptor (r = 0.90; p = 0.0008), whereas weak correlation was present for the other receptors. Our results suggest that the MC3 receptor is the major player in mediating the anti-inflammatory activity of MCs in the central nervous system.


Assuntos
Inflamação/patologia , Óxido Nítrico/antagonistas & inibidores , Óxido Nítrico/química , Receptor Tipo 3 de Melanocortina/química , Animais , Anti-Inflamatórios/farmacologia , Sistema Nervoso Central/patologia , Espectroscopia de Ressonância de Spin Eletrônica , Insetos , Lipopolissacarídeos/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos ICR , Peptídeos/química , Ligação Proteica , Receptores de Melanocortina/metabolismo
17.
Peptides ; 26(10): 1988-96, 2005 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-15985311

RESUMO

Human beta-MSH(1-22) was first isolated from human pituitary as a 22-amino acid (aa) peptide derived from a precursor protein, pro-opiomelanocortin (POMC). However, Bertagna et al. demonstrated that a shorter human beta-MSH(5-22), (DEGPYRMEHFRWGSPPKD), is a true endogenous peptide produced in human hypothalamus. In this report, we demonstrated that in vitro enzymatic cleavage of native human beta-MSH(5-22) with two ubiquitous dipeptidyl peptidases (DPP), DPP-I and DPP-IV, generated two potent MC3/4R peptide analogues, beta-MSH(7-22) (GPYRMEHFRWGSPPKD) and beta-MSH(9-22) (YRMEHFRWGSPPKD). In fact, the MC4R binding affinity and functional potency of beta-MSH(7-22) (Ki=4.6 nM, EC50=0.6 nM) and beta-MSH(9-22) (Ki=5.7 nM, EC50=0.6 nM) are almost an order of magnitude greater than those of their parent peptide, beta-MSH(5-22) (MC4R, Ki=23 nM, EC50= 3nM). Furthermore, the DPP-I/DPP-IV cleaved peptide, beta-MSH(9-22), when administered intracerebroventricularly (ICV) at a dose of 3 nmol/rat, potently induced an acute negative energy balance in a diet-induced obese rat model, while its parent molecule, beta-MSH(5-22), administered at the same dose did not have any effect. These data suggest that DPP-I and DPP-IV may play a role in converting the endogenous beta-MSH(5-22) to more potent peptides that regulate energy homeostasis in the hypothalamus.


Assuntos
Catepsina C/fisiologia , Dipeptidil Peptidase 4/fisiologia , Peptídeos/agonistas , Receptor Tipo 3 de Melanocortina/agonistas , Receptor Tipo 4 de Melanocortina/agonistas , beta-MSH/metabolismo , Animais , Catepsina C/química , Linhagem Celular , Dipeptidil Peptidase 4/química , Metabolismo Energético/fisiologia , Homeostase/fisiologia , Humanos , Hipotálamo/metabolismo , Hipotálamo/fisiologia , Masculino , Peptídeos/metabolismo , Ratos , Ratos Long-Evans , Receptor Tipo 3 de Melanocortina/química , Receptor Tipo 3 de Melanocortina/metabolismo , Receptor Tipo 4 de Melanocortina/química , Receptor Tipo 4 de Melanocortina/metabolismo
19.
J Mol Endocrinol ; 53(3): 319-30, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25228159

RESUMO

The melanocortin 3 receptor (MC3R) regulates several physiological functions, including feed efficiency, nutrient partitioning, fasting response, natriuresis, and immune reactions. Naturally occurring mutations in the MC3R gene have been shown to be associated with increased adiposity and lung diseases such as tuberculosis and cystic fibrosis. The DRY motif at the cytoplasmic end of transmembrane domain 3 (TM3) and the second intracellular loop 2 (ICL2) are known to be important for receptor function in several G protein-coupled receptors (GPCRs). To gain a better understanding of the functions of this domain in MC3R, we performed alanine-scanning mutagenesis on 18 residues. We showed that alanine mutation of 11 residues reduced the maximal binding and maximal cAMP production stimulated by agonists. Mutation of two residues did not change maximal binding but resulted in impaired signaling in the Gs-cAMP pathway. Mutation of five residues impaired signaling in the ERK1/2 pathway. We have also shown that alanine mutants of seven residues that were defective in the cAMP pathway were not defective in the ERK1/2 pathway, demonstrating biased signaling. In summary, we demonstrated that the cytoplasmic end of TM3 and the ICL2 were critical for MC3R function. We also reported for the first time biased signaling in MC3R.


Assuntos
Receptor Tipo 3 de Melanocortina/química , Receptor Tipo 3 de Melanocortina/fisiologia , Sequência de Aminoácidos , Substituição de Aminoácidos , Células Cultivadas , Células HEK293 , Humanos , Ligantes , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Ligação Proteica/genética , Estrutura Terciária de Proteína/fisiologia , Relação Estrutura-Atividade , Transfecção
20.
Mol Cell Endocrinol ; 394(1-2): 99-104, 2014 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-25017734

RESUMO

Cushing's disease, a hypercortisolemic state induced by an ACTH overexpressing pituitary adenoma, causes increased morbidity and mortality. Selective antagonism of the melanocortin type 2 receptor (MC2R) may be a novel treatment modality. Five structurally related peptides with modified HFRW sites but intact putative MC2R binding sites were tested for antagonistic activity at MC1R, MC2R/MRAP, MC3R, MC4R and MC5R. Two of these peptides (GPS1573 and GPS1574) dose-dependently antagonized ACTH-stimulated MC2R activity (IC50s of 66±23 nM and 260±1 nM, respectively). GPS1573 and 1574 suppressed the Rmax but not EC50 of ACTH on MC2R, indicating non-competitive antagonism. These peptides did not antagonize α-MSH stimulation of MC1R and antagonized MC3, 4 and 5R at markedly lower potency. GP1573 and GPS1574 antagonize MC4R with IC50s of 950 nM and 3.7 µM, respectively. In conclusion, two peptide antagonists were developed with selectivity for MC2R, forming a platform for development of a medical treatment for Cushing's disease.


Assuntos
Hormônio Adrenocorticotrópico/farmacologia , Desenho de Fármacos , Peptídeos/síntese química , Receptor Tipo 2 de Melanocortina/antagonistas & inibidores , Hormônio Adrenocorticotrópico/genética , Hormônio Adrenocorticotrópico/metabolismo , Sequência de Aminoácidos , Relação Dose-Resposta a Droga , Expressão Gênica , Células HEK293 , Humanos , Dados de Sequência Molecular , Peptídeos/farmacologia , Hipersecreção Hipofisária de ACTH/tratamento farmacológico , Ligação Proteica , Receptor Tipo 1 de Melanocortina/química , Receptor Tipo 1 de Melanocortina/genética , Receptor Tipo 1 de Melanocortina/metabolismo , Receptor Tipo 2 de Melanocortina/química , Receptor Tipo 2 de Melanocortina/genética , Receptor Tipo 2 de Melanocortina/metabolismo , Receptor Tipo 3 de Melanocortina/química , Receptor Tipo 3 de Melanocortina/genética , Receptor Tipo 3 de Melanocortina/metabolismo , Receptor Tipo 4 de Melanocortina/química , Receptor Tipo 4 de Melanocortina/genética , Receptor Tipo 4 de Melanocortina/metabolismo , Receptores de Melanocortina/química , Receptores de Melanocortina/genética , Receptores de Melanocortina/metabolismo , Relação Estrutura-Atividade , Transfecção
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA