Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 234
Filtrar
1.
Immunity ; 47(6): 1142-1153.e4, 2017 12 19.
Artigo em Inglês | MEDLINE | ID: mdl-29262350

RESUMO

Memory B cells (MBCs) and plasma cells (PCs) constitute the two cellular outputs of germinal center (GC) responses that together facilitate long-term humoral immunity. Although expression of the transcription factor BLIMP-1 identifies cells undergoing PC differentiation, no such marker exists for cells committed to the MBC lineage. Here, we report that the chemokine receptor CCR6 uniquely marks MBC precursors in both mouse and human GCs. CCR6+ GC B cells were highly enriched within the GC light zone (LZ), were the most quiescent of all GC B cells, exhibited a cell-surface phenotype and gene expression signature indicative of an MBC transition, and possessed the augmented response characteristics of MBCs. MBC precursors within the GC LZ predominantly possessed a low affinity for antigen but also included cells from within the high-affinity pool. These data indicate a fundamental dichotomy between the processes that drive MBC and PC differentiation during GC responses.


Assuntos
Centro Germinativo/imunologia , Imunidade Humoral , Plasmócitos/imunologia , Células Precursoras de Linfócitos B/imunologia , Receptores CCR6/imunologia , Animais , Antígeno B7-2/genética , Antígeno B7-2/imunologia , Diferenciação Celular , Linhagem da Célula/imunologia , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Centro Germinativo/citologia , Humanos , Memória Imunológica , Imunofenotipagem , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Fenótipo , Plasmócitos/citologia , Fator 1 de Ligação ao Domínio I Regulador Positivo/genética , Fator 1 de Ligação ao Domínio I Regulador Positivo/imunologia , Células Precursoras de Linfócitos B/citologia , Receptores CCR6/genética , Receptores CXCR4/genética , Receptores CXCR4/imunologia , Transdução de Sinais
2.
FASEB J ; 38(2): e23407, 2024 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-38197598

RESUMO

This study investigated the role of the axis involving chemokine receptor 6 (CCR6) and its ligand chemokine (C-C motif) ligand 20 (CCL20) in acute kidney disease (AKD) using an ischemia-reperfusion injury (IRI) model. The model was established by clamping the unilateral renal artery pedicle of C57BL/6 mice for 30 min, followed by evaluation of CCL20/CCR6 expression at 4 weeks post-IRI. In vitro studies were conducted to examine the effects of hypoxia and H2 O2 -induced oxidative stress on CCL20/CCR6 expression in kidney tissues of patients with AKD and chronic kidney disease (CKD). Tubular epithelial cell apoptosis was more severe in C57BL/6 mice than in CCL20 antibody-treated mice, and CCR6, NGAL mRNA, and IL-8 levels were higher under hypoxic conditions. CCL20 blockade ameliorated apoptotic damage in a dose-dependent manner under hypoxia and reactive oxygen species injury. CCR6 expression in IRI mice indicated that the disease severity was similar to that in patients with the AKD phenotype. Morphometry of CCL20/CCR6 expression revealed a higher likelihood of CCR6+ cell presence in CKD stage 3 patients than in stage 1-2 patients. Kidney tissues of patients with CKD frequently contained CCL20+ cells, which were positively correlated with interstitial inflammation. CCL20/CCR6 levels were increased in fibrotic kidneys at 4 and 8 weeks after 5/6 nephrectomy. These findings suggest that modulating the CCL20/CCR6 pathway is a potential therapeutic strategy for managing the progression of AKD to CKD.


Assuntos
Injúria Renal Aguda , Insuficiência Renal Crônica , Humanos , Animais , Camundongos , Camundongos Endogâmicos C57BL , Ligantes , Rim , Células Epiteliais , Artéria Renal , Hipóxia , Receptores CCR6/genética , Quimiocina CCL20/genética
3.
Circ Res ; 133(7): 592-610, 2023 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-37641931

RESUMO

BACKGROUND: Activation of immune-inflammatory pathways involving TNFα (tumor necrosis factor alpha) signaling is critical for revascularization and peripheral muscle tissue repair after ischemic injury. However, mechanisms of TNFα-driven inflammatory cascades directing recruitment of proangiogenic immune cells to sites of ischemia are unknown. METHODS: Muscle tissue revascularization after permanent femoral artery ligation was monitored in mutant mice by laser Doppler imaging and light sheet fluorescence microscopy. TNFα-mediated signaling and the role of the CCL20 (C-C motif chemokine ligand 20)-CCR6 (C-C chemokine receptor 6) axis for formation of new vessels was studied in vitro and in vivo using bone marrow transplantation, flow cytometry, as well as biochemical and molecular biological techniques. RESULTS: TNFα-mediated activation of TNFR (tumor necrosis factor receptor) 1 but not TNFR2 was found to be required for postischemic muscle tissue revascularization. Bone marrow-derived CCR6+ neutrophil granulocytes were identified as a previously undescribed TNFα-induced population of proangiogenic neutrophils, characterized by increased expression of VEGFA (vascular endothelial growth factor A). Mechanistically, postischemic activation of TNFR1 induced expression of the CCL20 in vascular cells and promoted translocation of the CCL20 receptor CCR6 to the cell surface of neutrophils, essentially conditioning VEGFA-expressing proangiogenic neutrophils for CCL20-dependent recruitment to sites of ischemia. Moreover, impaired revascularization of ischemic peripheral muscle tissue in diabetic mice was associated with reduced numbers of proangiogenic neutrophils and diminished CCL20 expression. Administration of recombinant CCL20 enhanced recruitment of proangiogenic neutrophils and improved revascularization of diabetic ischemic skeletal muscles, which was sustained by sequential treatment with fluvastatin. CONCLUSIONS: We demonstrate that site-specific activation of the CCL20-CCR6 axis via TNFα recruits proangiogenic VEGFA-expressing neutrophils to sites of ischemic injury for initiation of muscle tissue revascularization. The findings provide an attractive option for tissue revascularization, particularly under diabetic conditions.


Assuntos
Diabetes Mellitus Experimental , Neutrófilos , Animais , Camundongos , Receptores CCR6/genética , Fator de Necrose Tumoral alfa , Fator A de Crescimento do Endotélio Vascular , Procedimentos Cirúrgicos Vasculares
4.
J Immunol ; 210(11): 1700-1716, 2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-37093875

RESUMO

Th17 cells have been investigated in mice primarily for their contributions to autoimmune diseases. However, the pathways of differentiation of Th17 and related Th cells (type 17 cells) and the structure of the type 17 memory population in humans are not well understood; such understanding is critical for manipulating these cells in vivo. By exploiting differences in levels of surface CCR6, we found that human type 17 memory cells, including individual T cell clonotypes, form an elongated continuum of type 17 character along which cells can be driven by increasing RORγt. This continuum includes cells preserved within the memory pool with potentials that reflect the early preferential activation of multiple over single lineages. The phenotypes and epigenomes of CCR6+ cells are stable across cell divisions under noninflammatory conditions. Nonetheless, activation in polarizing and nonpolarizing conditions can yield additional functionalities, revealing, respectively, both environmentally induced and imprinted mechanisms that contribute differentially across the type 17 continuum to yield the unusual plasticity ascribed to type 17 cells.


Assuntos
Doenças Autoimunes , Células Th17 , Humanos , Diferenciação Celular , Fenótipo , Receptores CCR6/genética , Células Th1/metabolismo
5.
Genes Cells ; 28(4): 267-276, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36641236

RESUMO

Although excessive immune responses by Th17 cells, a helper T cell subset, are implicated in the pathogenesis of inflammatory bowel disease (IBD), the mechanism by which its localization in an inflamed colon is regulated remains unclear. Chemokines and their receptors are involved in the pathogenesis of IBD, however, the relative significance of each receptor on Th17 cells remains unknown. We generated C-C motif chemokine receptor 2 (CCR2) knockout (KO) and CCR6 KO mice in the syngeneic background using the CRISPR/Cas9 system and found that the phenotypes of experimental colitis worsened in both mutant mice. Surprisingly, the phenotype of colitis in CCR2/CCR6-double knockout (CCR2/6 DKO) mice was opposite to that of the single-deficient mice, with significantly milder experimental colitis (p < .05). The same was true for the symptoms in CCR6 KO mice, but not in wild type mice treated with a CCR2 inhibitor, propagermanium. Colonic CCR2+ CCR6+ Th17 cells produced a potentially pathogenic cytokine GM-CSF whose levels in the gut were significantly reduced in CCR2/6 DKO mice (p < .05). These results suggest that GM-CSF-producing CCR2+ CCR6+ Th17 cells are pathogenic and are attracted to the inflamed colon by either CCR2 or CCR6 gradient, which subsequently exacerbates experimental colitis in mice.


Assuntos
Colite , Doenças Inflamatórias Intestinais , Camundongos , Animais , Células Th17/metabolismo , Células Th17/patologia , Dextranos/efeitos adversos , Fator Estimulador de Colônias de Granulócitos e Macrófagos/efeitos adversos , Receptores de Fator Estimulador das Colônias de Granulócitos e Macrófagos , Colite/induzido quimicamente , Colite/genética , Quimiocinas/efeitos adversos , Camundongos Knockout , Camundongos Endogâmicos C57BL , Receptores CCR6/genética , Receptores CCR2/genética
6.
Biochemistry (Mosc) ; 89(5): 904-911, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38880650

RESUMO

Multiple sclerosis (MS) is a complex autoimmune disease of central nervous system (CNS) characterized by the myelin sheath destruction and compromised nerve signal transmission. Understanding molecular mechanisms driving MS development is critical due to its early onset, chronic course, and therapeutic approaches based only on symptomatic treatment. Cytokines are known to play a pivotal role in the MS pathogenesis with interleukin-6 (IL-6) being one of the key mediators. This study investigates contribution of IL-6 produced by microglia and dendritic cells to the development of experimental autoimmune encephalomyelitis (EAE), a widely used mouse model of MS. Mice with conditional inactivation of IL-6 in the CX3CR1+ cells, including microglia, or CD11c+ dendritic cells, displayed less severe symptoms as compared to their wild-type counterparts. Mice with microglial IL-6 deletion exhibited an elevated proportion of regulatory T cells and reduced percentage of pathogenic IFNγ-producing CD4+ T cells, accompanied by the decrease in pro-inflammatory monocytes in the CNS at the peak of EAE. At the same time, deletion of IL-6 from microglia resulted in the increase of CCR6+ T cells and GM-CSF-producing T cells. Conversely, mice with IL-6 deficiency in the dendritic cells showed not only the previously described increase in the proportion of regulatory T cells and decrease in the proportion of TH17 cells, but also reduction in the production of GM-CSF and IFNγ in the secondary lymphoid organs. In summary, IL-6 functions during EAE depend on both the source and localization of immune response: the microglial IL-6 exerts both pathogenic and protective functions specifically in the CNS, whereas the dendritic cell-derived IL-6, in addition to being critically involved in the balance of regulatory T cells and TH17 cells, may stimulate production of cytokines associated with pathogenic functions of T cells.


Assuntos
Células Dendríticas , Modelos Animais de Doenças , Encefalomielite Autoimune Experimental , Interleucina-6 , Microglia , Esclerose Múltipla , Animais , Células Dendríticas/metabolismo , Células Dendríticas/imunologia , Camundongos , Interleucina-6/metabolismo , Esclerose Múltipla/imunologia , Esclerose Múltipla/metabolismo , Esclerose Múltipla/patologia , Microglia/metabolismo , Encefalomielite Autoimune Experimental/metabolismo , Encefalomielite Autoimune Experimental/imunologia , Encefalomielite Autoimune Experimental/patologia , Camundongos Endogâmicos C57BL , Receptor 1 de Quimiocina CX3C/metabolismo , Receptor 1 de Quimiocina CX3C/genética , Linfócitos T Reguladores/imunologia , Linfócitos T Reguladores/metabolismo , Receptores CCR6/metabolismo , Receptores CCR6/genética , Feminino
7.
Cancer Sci ; 114(4): 1479-1490, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36479732

RESUMO

The suppression of androgen receptor (AR) expression exacerbates the migration potential of prostate cancer. This study identified a previously unrecognized regulation of the AR-controlled pathway that promotes migration potential in prostate cancer cells. Prostate cancer cells that pass through a transwell membrane (mig cells) have a higher migration potential with a decreased AR expression than parental cells. In this study, we aimed to elucidate the mechanism of migration enhancement associated with the suppression of AR signaling. Expression of C-C motif ligand 20 (CCL20) is upregulated in mig cells, unlike in the parental cells. Knockdown of AR with small interfering RNA (siAR) in LNCaP and C4-2B cells increased CCL20 secretion and enhanced the migration of cancer cells. Mig cells, CCL20-treated cells, and siAR cells promoted cell migration with an enhancement of AKT phosphorylation and Snail expression, while the addition of a C-C chemokine receptor 6 (CCR6, the specific receptor of CCL20) inhibitor, anti-CCL20 antibody, and AKT inhibitor suppressed the activation of AKT and Snail. With 59 samples of prostate cancer tissue, CCL20 secretion was profuse in metastatic cases despite low AR expression levels. Snail expression was associated with the expression of CCL20 and CCR6. A xenograft study showed that the anti-CCL20 antibody significantly inhibited Snail expression, thereby suggesting a new therapeutic approach for castration-resistant prostate cancer with the inhibition of the axis between CCL20 and CCR6.


Assuntos
Neoplasias da Próstata , Proteínas Proto-Oncogênicas c-akt , Masculino , Humanos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Receptores Androgênicos , Transdução de Sinais , Quimiocina CCL20/genética , Quimiocina CCL20/metabolismo , Linhagem Celular Tumoral , Receptores CCR6/genética , Proliferação de Células
8.
Kidney Int ; 104(1): 74-89, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-36924892

RESUMO

Previous studies have identified a unique Treg population, which expresses the Th17 characteristic transcription factor RORγt. These RORγt+ Tregs possess enhanced immunosuppressive capacity, which endows them with great therapeutic potential. However, as a caveat, they are also capable of secreting pro-inflammatory IL-17A. Since the sum function of RORγt+ Tregs in glomerulonephritis (GN) remains unknown, we studied the effects of their absence. Purified CD4+ T cell populations, containing or lacking RORγt+ Tregs, were transferred into immunocompromised RAG1 knockout mice and the nephrotoxic nephritis model of GN was induced. Absence of RORγt+ Tregs significantly aggravated kidney injury, demonstrating overall kidney-protective properties. Analyses of immune responses showed that RORγt+ Tregs were broadly immunosuppressive with no preference for a particular type of T cell response. Further characterization revealed a distinct functional and transcriptional profile, including enhanced production of IL-10. Expression of the chemokine receptor CCR6 marked a particularly potent subset, whose absence significantly worsened GN. As an underlying mechanism, we found that chemokine CCL20 acting through receptor CCR6 signaling mediated expansion and activation of RORγt+ Tregs. Finally, we also detected an increase of CCR6+ Tregs in kidney biopsies, as well as enhanced secretion of chemokine CCL20 in 21 patients with anti-neutrophil cytoplasmic antibody associated GN compared to that of 31 healthy living donors, indicating clinical relevance. Thus, our data characterize RORγt+ Tregs as anti-inflammatory mediators of GN and identify them as promising target for Treg directed therapies.


Assuntos
Glomerulonefrite , Membro 3 do Grupo F da Subfamília 1 de Receptores Nucleares , Camundongos , Animais , Membro 3 do Grupo F da Subfamília 1 de Receptores Nucleares/genética , Membro 3 do Grupo F da Subfamília 1 de Receptores Nucleares/metabolismo , Linfócitos T Reguladores , Quimiocina CCL20/genética , Quimiocina CCL20/metabolismo , Rim/patologia , Camundongos Knockout , Células Th17 , Receptores CCR6/genética , Receptores CCR6/metabolismo
9.
Gastroenterology ; 163(5): 1334-1350.e14, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35863523

RESUMO

BACKGROUND & AIMS: We previously reported that colon epithelial cell silencing of Smad4 increased epithelial expression of inflammatory genes, including the chemokine c-c motif chemokine ligand 20 (CCL20), and increased susceptibility to colitis-associated cancer. Here, we examine the role of the chemokine/receptor pair CCL20/c-c motif chemokine receptor 6 (CCR6) in mediating colitis-associated colon carcinogenesis induced by SMAD4 loss. METHODS: In silico analysis of SMAD4, CCL20, and CCR6 messenger RNA expression was performed on published transcriptomic data from human ulcerative colitis (UC), and colon and rectal cancer samples. Immunohistochemistry for CCL20 and CCR6 was performed on human tissue microarrays comprising human UC-associated cancer specimens, Mice with conditional, epithelial-specific Smad4 loss with and without germline deletion of the Ccr6 gene were subjected to colitis and followed for up to 3 months. Tumors were quantified histologically, and immune cell populations were analyzed by flow cytometry and immunostaining. RESULTS: In human UC-associated cancers, loss of epithelial SMAD4 was associated with increased CCL20 expression and CCR6+ cells. SMAD4 loss in mouse colon epithelium led to enlarged gut-associated lymphoid tissues and recruitment of immune cells to the mouse colon epithelium and stroma, particularly T regulatory, Th17, and dendritic cells. Loss of CCR6 abrogated these immune responses and significantly reduced the incidence of colitis-associated tumors observed with loss of SMAD4 alone. CONCLUSIONS: Regulation of mucosal inflammation is central to SMAD4 tumor suppressor function in the colon. A key downstream node in this regulation is suppression of epithelial CCL20 signaling to CCR6 in immune cells. Loss of SMAD4 in the colon epithelium increases CCL20 expression and chemoattraction of CCR6+ immune cells, contributing to greater susceptibility to colon cancer.


Assuntos
Carcinoma , Neoplasias Associadas a Colite , Colite , Humanos , Camundongos , Animais , Receptores CCR6/genética , Quimiocina CCL20/metabolismo , Ligantes , Inflamação , Colite/complicações , RNA Mensageiro , Proteína Smad4/genética , Proteína Smad4/metabolismo
10.
Biochem Biophys Res Commun ; 641: 123-131, 2023 01 22.
Artigo em Inglês | MEDLINE | ID: mdl-36527746

RESUMO

Multiple sclerosis is an autoimmune disease in which the immune system attacks the nerve myelin sheath. The balance between pathogenic Th17 cells and regulatory Treg cells, both of which express the chemokine receptor CCR6 is critical for determining disease activity. It has been postulated that CCL20, the cognate ligand of CCR6, produced by the blood-brain barrier attracts these immune cells to the central nervous system (CNS). However, the pathological phenotypes of the experimental model of multiple sclerosis in CCR6-knockout (KO) mice are inconclusive, while this has not been addressed in CCL20-KO mice. To address this, we generated CCL20-KO and CCR6-KO mice using the CRISPR/Cas9 system. Clinical phenotypes of experimental autoimmune encephalomyelitis (EAE) in the chronic phase were slightly exacerbated in both mutant mice relative to those in wild-type (WT) mice. Inflammatory cell infiltration and demyelination in the CNS were similar in the KO and WT mice. CNS CD4+ T cell counts were the same for mutant and WT mice. The mutant and WT mice did not differ significantly in the proportions of Th17 and Treg cells in the CNS, or in IL-17 and TGF-ß mRNA expression in the CNS. These findings suggest that CCL20/CCR6-mediated cell migration is not necessarily required for the onset of EAE, and may be compensated for by other chemokine signals.


Assuntos
Encefalomielite Autoimune Experimental , Esclerose Múltipla , Animais , Camundongos , Sistema Nervoso Central/metabolismo , Quimiocinas/metabolismo , Encefalomielite Autoimune Experimental/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Knockout , Esclerose Múltipla/patologia , Receptores CCR6/genética , Receptores CCR6/metabolismo
11.
Cancer Immunol Immunother ; 72(5): 1089-1102, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36326893

RESUMO

BACKGROUND:  Radioresistance of HNSCCs remains a major challenge for effective tumor control. Combined radiotherapy (RT) and immunotherapy (IT) treatment improved survival for a subset of patients with inflamed tumors or tumors susceptible to RT-induced inflammation. To overcome radioresistance and improve treatment outcomes, an understanding of factors that suppress anti-tumor immunity is necessary. In this regard, regulatory T cells (Tregs) are critical mediators of immune suppression in HNSCCs. In this study, we investigated how radiation modulates Treg infiltration in tumors through the chemokine CCL20. We hypothesized that radiation induces CCL20 secretion resulting in Treg infiltration and suppression of anti-tumor immunity. METHODS:  Human and mouse HNSCC cell lines with different immune phenotypes were irradiated at doses of 2 or 10 Gy. Conditioned media, RNA and protein were collected for assessment of CCL20. qPCR was used to determine CCL20 gene expression. In vivo, MOC2 cells were implanted into the buccal cavity of mice and the effect of neutralizing CCL20 antibody was determined alone and in combination with RT. Blood samples were collected before and after RT for analysis of CCL20. Tumor samples were analyzed by flow cytometry to determine immune infiltrates, including CD8 T cells and Tregs. Mass-spectrometry was performed to analyze proteomic changes in the tumor microenvironment after anti-CCL20 treatment. RESULTS:  Cal27 and MOC2 HNSCCs had a gene signature associated with Treg infiltration, whereas SCC9 and MOC1 tumors displayed a gene signature associated with an inflamed TME. In vitro, tumor irradiation at 10 Gy significantly induced CCL20 in Cal27 and MOC2 cells relative to control. The increase in CCL20 was associated with increased Treg migration. Neutralization of CCL20 reversed radiation-induced migration of Treg cells in vitro and decreased intratumoral Tregs in vivo. Furthermore, inhibition of CCL20 resulted in a significant decrease in tumor growth compared to control in MOC2 tumors. This effect was further enhanced after combination with RT compared to either treatment alone. CONCLUSION:  Our results suggest that radiation promotes CCL20 secretion by tumor cells which is responsible for the attraction of Tregs. Inhibition of the CCR6-CCL20 axis prevents infiltration of Tregs in tumors and suppresses tumor growth resulting in improved response to radiation.


Assuntos
Neoplasias de Cabeça e Pescoço , Linfócitos T Reguladores , Humanos , Carcinoma de Células Escamosas de Cabeça e Pescoço/radioterapia , Carcinoma de Células Escamosas de Cabeça e Pescoço/metabolismo , Quimiocina CCL20/genética , Quimiocina CCL20/metabolismo , Proteômica , Neoplasias de Cabeça e Pescoço/radioterapia , Neoplasias de Cabeça e Pescoço/metabolismo , Microambiente Tumoral , Receptores CCR6/genética , Receptores CCR6/metabolismo
12.
Inflamm Res ; 72(4): 715-729, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36749385

RESUMO

INTRODUCTION: Sepsis or endotoxemia can induce intestinal dysfunction in the epithelial and immune barrier. Th17 cells, a distinct subset of CD4+ T-helper cells, act as "border patrol" in the intestine under pathological condition and in the previous studies, Th17 cells exhibited an ambiguous function in intestinal inflammation. Our study will explore a specific role of Th17 cells and its relevant mechanism in endotoxemia-induced intestinal injury. MATERIALS AND METHODS: Lipopolysaccharide was used to establish mouse model of endotoxemia. miR-681 was analyzed by RT-PCR and northern blot analysis and its regulation by HIF-1α was determined by chromatin immunoprecipitation and luciferase reporter assay. Intestinal Th17 cells isolated from endotoxemic mice were quantitatively evaluated by flow cytometry and its recruitment to the intestine controlled by miR-681/CCR6 pathway was assessed by using anti-miRNA treatment and CCR6 knockout mice. Intestinal histopathology, villus length, intestinal inflammation, intestinal permeability, bacterial translocation and survival were investigated, by histology and TUNEL analysis, ELISA, measurement of diamine oxidase, bacterial culture, with or without anti-miR-681 treatment in endotoxemic wild-type and (or) CCR6 knockout mice. RESULTS: In this study, we found that miR-681 was significantly promoted in intestinal Th17 cells during endotoxemia, which was dependent on hypoxia-inducible factor-1α (HIF-1α). Interestingly, miR-681 could directly suppress CCR6, which was a critical modulator for Th17 cell recruitment to the intestines. In vivo, anti-miR-681 enhanced survival, increased number of intestinal Th17 cells, reduced crypt and villi apoptosis, decreased intestinal inflammation and bacterial translocation, resulting in protection against endotoxemia-induced intestinal injury in mice. However, CCR6 deficiency could neutralize the beneficial effect of anti-miR-681 on the intestine during endotoxemia, suggesting that the increment of intestinal Th17 cells caused by anti-miR-681 relies on CCR6 expression. CONCLUSION: The results of the study indicate that control of intestinal Th17 cells by regulating novel miR-681/CCR6 signaling attenuates endotoxemia-induced intestinal injury.


Assuntos
Endotoxemia , Células Th17 , Camundongos , Animais , Endotoxemia/metabolismo , Antagomirs/metabolismo , Antagomirs/farmacologia , Intestinos , Mucosa Intestinal , Receptores CCR6/genética
13.
Gastric Cancer ; 26(6): 904-917, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37572185

RESUMO

BACKGROUND: Peroxisome proliferator-activated receptor delta (PPARδ) promotes inflammation and carcinogenesis in many organs, but the underlying mechanisms remains elusive. In stomachs, PPARδ significantly increases chemokine Ccl20 expression in gastric epithelial cells while inducing gastric adenocarcinoma (GAC). CCR6 is the sole receptor of CCL20. Here, we examine the role of PPARδ-mediated Ccl20/Ccr6 signaling in GAC carcinogenesis and investigate the underlying mechanisms. METHODS: The effects of PPARδ inhibition by its specific antagonist GSK3787 on GAC were examined in the mice with villin-promoter-driven PPARδ overexpression (PpardTG). RNAscope Duplex Assays were used to measure Ccl20 and Ccr6 levels in stomachs and spleens. Subsets of stomach-infiltrating immune cells were measured via flow cytometry or immunostaining in PpardTG mice fed GSK3787 or control diet. A panel of 13 optimized proinflammatory chemokines in mouse sera were quantified by an enzyme-linked immunosorbent assay. RESULTS: GSK3787 significantly suppressed GAC carcinogenesis in PpardTG mice. PPARδ increased Ccl20 level to chemoattract Ccr6+ immunosuppressive cells, including tumor-associated macrophages, myeloid-derived suppressor cells and T regulatory cells, but decreased CD8+ T cells in gastric tissues. GSK3787 suppressed PPARδ-induced gastric immunosuppression by inhibiting Ccl20/Ccr6 axis. Furthermore, Ccl20 protein levels increased in sera of PpardTG mice starting at the age preceding gastric tumor development and further increased with GAC progression as the mice aged. GSK3787 decreased the PPARδ-upregulated Ccl20 levels in sera of the mice. CONCLUSIONS: PPARδ dysregulation of Ccl20/Ccr6 axis promotes GAC carcinogenesis by remodeling gastric tumor microenvironment. CCL20 might be a potential biomarker for the early detection and progression of GAC.


Assuntos
Adenocarcinoma , PPAR delta , Neoplasias Gástricas , Humanos , Animais , Camundongos , Quimiocina CCL20/genética , Quimiocina CCL20/metabolismo , PPAR delta/genética , Linfócitos T CD8-Positivos , Microambiente Tumoral , Carcinogênese , Receptores CCR6/genética , Receptores CCR6/metabolismo
14.
J Immunol ; 207(6): 1513-1521, 2021 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-34400521

RESUMO

B cells have been implicated in the pathogenesis of multiple sclerosis, but the mechanisms that guide B cell activation in the periphery and subsequent migration to the CNS remain incompletely understood. We previously showed that systemic inflammation induces an accumulation of B cells in the spleen in a CCR6/CCL20-dependent manner. In this study, we evaluated the role of CCR6/CCL20 in the context of myelin oligodendrocyte glycoprotein (MOG) protein-induced (B cell-dependent) experimental autoimmune encephalomyelitis (EAE). We found that CCR6 is upregulated on murine B cells that migrate into the CNS during neuroinflammation. In addition, human B cells that migrate across CNS endothelium in vitro were found to be CCR6+, and we detected CCL20 production by activated CNS-derived human endothelial cells as well as a systemic increase in CCL20 protein during EAE. Although mice that lack CCR6 expression specifically on B cells exhibited an altered germinal center reaction in response to MOG protein immunization, CCR6-deficient B cells did not exhibit any competitive disadvantage in their migration to the CNS during EAE, and the clinical and pathological presentation of EAE induced by MOG protein was unaffected. These data, to our knowledge, provide new information on the role of B cell-intrinsic CCR6 expression in a B cell-dependent model of neuroinflammation.


Assuntos
Linfócitos B/imunologia , Encefalomielite Autoimune Experimental/imunologia , Centro Germinativo/imunologia , Imunização/métodos , Glicoproteína Mielina-Oligodendrócito/administração & dosagem , Receptores CCR6/deficiência , Animais , Linfócitos B/metabolismo , Doadores de Sangue , Barreira Hematoencefálica/citologia , Barreira Hematoencefálica/imunologia , Movimento Celular/genética , Movimento Celular/imunologia , Células Cultivadas , Quimiocina CCL20/metabolismo , Encefalomielite Autoimune Experimental/induzido quimicamente , Células Endoteliais/imunologia , Feminino , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Glicoproteína Mielina-Oligodendrócito/genética , Receptores CCR6/genética , Proteínas Recombinantes/administração & dosagem
15.
Gut ; 71(9): 1831-1842, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-34702715

RESUMO

OBJECTIVE: Chronic pancreatitis (CP) is a potentially fatal disease of the exocrine pancreas, with no specific or effective approved therapies. Due to difficulty in accessing pancreas tissues, little is known about local immune responses or pathogenesis in human CP. We sought to characterise pancreatic immune responses using tissues derived from patients with different aetiologies of CP and non-CP organ donors in order to identify key signalling molecules associated with human CP. DESIGN: We performed single-cell level cellular indexing of transcriptomes and epitopes by sequencing and T-cell receptor (TCR) sequencing of pancreatic immune cells isolated from organ donors, hereditary and idiopathic patients with CP who underwent total pancreatectomy. We validated gene expression data by performing flow cytometry and functional assays in a second patient with CP cohort. RESULTS: Deep single-cell sequencing revealed distinct immune characteristics and significantly enriched CCR6+ CD4+ T cells in hereditary compared with idiopathic CP. In hereditary CP, a reduction in T-cell clonality was observed due to the increased CD4+ T (Th) cells that replaced tissue-resident CD8+ T cells. Shared TCR clonotype analysis among T-cell lineages also unveiled unique interactions between CCR6+ Th and Th1 subsets, and TCR clustering analysis showed unique common antigen binding motifs in hereditary CP. In addition, we observed a significant upregulation of the CCR6 ligand (CCL20) expression among monocytes in hereditary CP as compared with those in idiopathic CP. The functional significance of CCR6 expression in CD4+ T cells was confirmed by flow cytometry and chemotaxis assay. CONCLUSION: Single-cell sequencing with pancreatic immune cells in human CP highlights pancreas-specific immune crosstalk through the CCR6-CCL20 axis, a signalling pathway that might be leveraged as a potential future target in human hereditary CP.


Assuntos
Pancreatite Crônica , Receptores CCR6 , Imunidade Adaptativa , Linfócitos T CD8-Positivos , Quimiocina CCL20/metabolismo , Citometria de Fluxo , Humanos , Pancreatite Crônica/genética , Receptores CCR6/genética , Receptores CCR6/metabolismo
16.
Mol Cancer ; 21(1): 173, 2022 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-36045408

RESUMO

BACKGROUND: Circular RNAs (circRNAs) mediate the infiltration of tumor-associated macrophages (TAMs) to facilitate carcinogenesis and development of various types of cancers. However, the role of circRNAs in regulating macrophages in prostate cancer (PCa) remains uncertain. METHODS: Differentially expressed circRNAs in PCa were identified by RNA sequencing. The expression of circSMARCC1 was recognized and evaluated using fluorescence in situ hybridization and quantitative real-time PCR. The oncogenic role of circSMARCC1 in PCa tumor proliferation and metastasis was investigated through a series of in vitro and in vivo assays. Finally, Western blot, biotin-labeled RNA pulldown, luciferase assay, rescue experiments, and co-culture experiments with TAMs were conducted to reveal the mechanistic role of circSMARCC1. RESULTS: CircSMARCC1 was dramatically up-regulated in PCa cells, plasma and tissues. Overexpression of circSMARCC1 promotes tumor proliferation and metastasis both in vitro and in vivo, whereas knockdown of circSMARCC1 exerts the opposite effects. Mechanistically, circSMARCC1 regulates the expression of CC-chemokine ligand 20 (CCL20) via sponging miR-1322 and activate PI3K-Akt signaling pathway involved in the proliferation and epithelial mesenchymal transformation. More importantly, high expression of circSMARCC1 was positively associated with colonization of CD68+/CD163+/CD206+ TAMs in tumor microenvironment. In addition, overexpression of circSMARCC1 facilitates the expression of CD163 in macrophages through the CCL20-CCR6 axis, induces TAMs infiltration and M2 polarization, thereby leading to PCa progression. CONCLUSIONS: CircSMARCC1 up-regulates the chemokine CCL20 secretion by sponging miR-1322, which is involved in the crosstalk between tumor cells and TAMs by targeting CCL20/CCR6 signaling to promote progression of PCa.


Assuntos
Neoplasias da Próstata , RNA Circular , Microambiente Tumoral , Linhagem Celular Tumoral , Proliferação de Células , Quimiocina CCL20 , Quimiocinas CC , Humanos , Hibridização in Situ Fluorescente , Ligantes , Masculino , MicroRNAs/genética , Fosfatidilinositol 3-Quinases/genética , Neoplasias da Próstata/genética , Neoplasias da Próstata/metabolismo , RNA Circular/genética , Receptores CCR6/genética , Transdução de Sinais , Microambiente Tumoral/genética , Macrófagos Associados a Tumor
17.
J Autoimmun ; 126: 102775, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34864633

RESUMO

Primary biliary cholangitis (PBC) is a chronic cholestatic autoimmune liver disease that appears to be strongly influenced by genetic factors. Recently, an international meta-analysis of genome-wide association studies (GWAS) identified CC-Motif Chemokine Receptor-6 (CCR6) and FGFR1 Oncogene-Partner (FGFR1OP) as PBC-susceptibility genes. However, the lead single nucleotide polymorphisms (SNPs) of CCR6/FGFR1OP showed low linkage disequilibrium with each other in East Asian and European populations. Additionally, the primary functional variants and the molecular mechanisms responsible for PBC-susceptibility remain unclear. Here, among the PBC-susceptibility SNPs identified by high-density association mapping in our previous meta-GWAS (Patients: n = 10,516; healthy controls: n = 20,772) within the CCR6/FGFR1OP locus, rs9459874 and rs1012656 were identified as primary functional variants. These functional variants accounted for the effects of GWAS-identified lead SNPs in CCR6/FGFR1OP. Additionally, the roles of rs9459874 and rs1012656 in regulating FGFR1OP transcription and CCR6 translation, respectively, were supported by expression quantitative trait loci (eQTL) analysis and gene editing technology using the CRISPR/Cas9 system. Immunohistochemistry showed higher expression of CCR6 protein in the livers of patients with PBC than in those of a non-diseased control. In conclusion, we identified primary functional variants in CCR6/FGFR1OP and revealed the molecular mechanisms by which these variants confer PBC-susceptibility in an eQTL-dependent or -independent manner. The approach in this study is applicable for the elucidation of the pathogenesis of other autoimmune disorders in which CCR6/FGFR1OP is known as a susceptibility locus, as well as PBC.


Assuntos
Estudo de Associação Genômica Ampla , Cirrose Hepática Biliar , Proteínas Proto-Oncogênicas/genética , Povo Asiático , Predisposição Genética para Doença , Humanos , Cirrose Hepática Biliar/genética , Polimorfismo de Nucleotídeo Único , Receptores CCR6/genética
18.
Haematologica ; 107(6): 1384-1396, 2022 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-35142152

RESUMO

The genesis of extranodal marginal zone lymphoma of mucosa-associated lymphoid tissue (MALT) is driven by oncogenic co-operation among immunological stimulations and acquired genetic changes. We previously identified recurrent CCR6 mutations in MALT lymphoma, with majority predicted to result in truncated proteins lacking the phosphorylation motif important for receptor desensitization. Functional consequences of these mutational changes, the molecular mechanisms of CCR6 activation and how this receptor signaling contributes to MALT lymphoma development remain to be investigated. In the present study, we demonstrated that these mutations impaired CCR6 receptor internalization and were activating changes, being more potent in apoptosis resistance, malignant transformation, migration and intracellular signaling, particularly in the presence of the ligands CCL20, HBD2 (human b defensin 2) and HD5 (human a defensin 5). CCR6 was highly expressed in malignant B cells irrespective of the lymphoma sites. HBD2 and CCL20 were constitutively expressed by the duct epithelial cells of salivary glands, and also those involved in lymphoepithelial lesions (LEL) in salivary gland MALT lymphoma. While in the gastric setting, HBD2, and HD5, to a less extent CCL20, were highly expressed in epithelial cells of pyloric and intestinal metaplasia respectively including those involved in LEL, which are adaptive responses to chronic Helicobacter pylori infection. These findings suggest that CCR6 signaling is most likely active in MALT lymphoma, independent of its mutation status. The observations explain why the emergence of malignant B cells and their clonal expansion in MALT lymphoma are typically around LEL, linking the innate immune responses to lymphoma genesis.


Assuntos
Infecções por Helicobacter , Helicobacter pylori , Linfoma de Zona Marginal Tipo Células B , Defensinas , Helicobacter pylori/metabolismo , Humanos , Imunidade Inata , Linfoma de Zona Marginal Tipo Células B/genética , Receptores CCR6/genética
19.
Immunity ; 38(1): 53-65, 2013 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-23159439

RESUMO

T helper 17 (Th17) cells protect against infection but also promote inflammation and autoimmunity. Therefore, the factors that govern Th17 cell differentiation are of special interest. The CD27 and CD70 costimulatory pathway impeded Th17 effector cell differentiation and associated autoimmunity in a mouse model of multiple sclerosis. CD27 or CD70 deficiency exacerbated disease, whereas constitutive CD27 signaling strongly reduced disease incidence and severity. CD27 signaling did not impact master regulators of T helper cell lineage commitment but selectively repressed transcription of the key effector molecules interleukin-17 (IL-17) and the chemokine receptor CCR6 in differentiating Th17 cells. CD27 mediated this repression at least in part via the c-Jun N-terminal kinase (JNK) pathway that restrained IL-17 and CCR6 expression in differentiating Th17 cells. CD27 signaling also resulted in epigenetic silencing of the Il17a gene. Thus, CD27 costimulation via JNK signaling, transcriptional, and epigenetic effects suppresses Th17 effector cell function and associated pathological consequences.


Assuntos
Autoimunidade/imunologia , Ligante CD27/metabolismo , Transdução de Sinais , Células Th17/imunologia , Células Th17/metabolismo , Membro 7 da Superfamília de Receptores de Fatores de Necrose Tumoral/metabolismo , Animais , Autoimunidade/genética , Ligante CD27/genética , Diferenciação Celular/imunologia , Encefalomielite Autoimune Experimental/genética , Encefalomielite Autoimune Experimental/imunologia , Encefalomielite Autoimune Experimental/metabolismo , Epigênese Genética , Regulação da Expressão Gênica , Inativação Gênica , Interleucina-17/genética , Interleucina-17/imunologia , Interleucina-17/metabolismo , Sistema de Sinalização das MAP Quinases , Camundongos , Camundongos Transgênicos , Membro 3 do Grupo F da Subfamília 1 de Receptores Nucleares/genética , Membro 3 do Grupo F da Subfamília 1 de Receptores Nucleares/metabolismo , Receptores CCR6/genética , Receptores CCR6/metabolismo , Células Th17/citologia
20.
Semin Cell Dev Biol ; 88: 163-172, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-29501617

RESUMO

Defensins have been long recognized as natural antimicrobial peptides, but they also possess diverse and versatile immune functions. Defensins can both induce inflammation and suppress inflammatory responses by acting on specific cells through distinct mechanisms. Defensins can also modulate the immune response by forming a complex with cellular molecules including proteins, nucleic acids, and carbohydrates. The mechanisms of defensin-mediated immune modulation appear to be cell-type and context specific. Because the levels of human defensins are often altered in response to infection or disease states, suggesting their clinical relevance, this review summarizes the complex immune functions of human defensins and their underlying mechanisms of action, which have implications for the development of new therapeutics.


Assuntos
Imunidade Inata , Interleucinas/imunologia , Receptores Toll-Like/imunologia , alfa-Defensinas/imunologia , beta-Defensinas/imunologia , Sequência de Aminoácidos , Animais , Carcinogênese/genética , Carcinogênese/imunologia , Carcinogênese/patologia , Células Epiteliais/imunologia , Regulação da Expressão Gênica , Humanos , Interleucinas/genética , Receptores CCR6/genética , Receptores CCR6/imunologia , Transdução de Sinais , Receptores Toll-Like/genética , alfa-Defensinas/genética , beta-Defensinas/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA