Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 937
Filtrar
1.
Mol Cell ; 84(11): 2104-2118.e6, 2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38761795

RESUMO

Circular RNAs (circRNAs) are stable RNAs present in cell-free RNA, which may comprise cellular debris and pathogen genomes. Here, we investigate the phenomenon and mechanism of cellular uptake and intracellular fate of exogenous circRNAs. Human myeloid cells and B cells selectively internalize extracellular circRNAs. Macrophage uptake of circRNA is rapid, energy dependent, and saturable. CircRNA uptake can lead to translation of encoded sequences and antigen presentation. The route of internalization influences immune activation after circRNA uptake, with distinct gene expression programs depending on the route of RNA delivery. Genome-scale CRISPR screens and chemical inhibitor studies nominate macrophage scavenger receptor MSR1, Toll-like receptors, and mTOR signaling as key regulators of receptor-mediated phagocytosis of circRNAs, a dominant pathway to internalize circRNAs in parallel to macropinocytosis. These results suggest that cell-free circRNA serves as an "eat me" signal and danger-associated molecular pattern, indicating orderly pathways of recognition and disposal.


Assuntos
Macrófagos , Fagocitose , RNA Circular , Transdução de Sinais , RNA Circular/genética , RNA Circular/metabolismo , Humanos , Macrófagos/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Serina-Treonina Quinases TOR/genética , Animais , Receptores Toll-Like/metabolismo , Receptores Toll-Like/genética , Linfócitos B/metabolismo , Linfócitos B/imunologia , Receptores Depuradores Classe A/metabolismo , Receptores Depuradores Classe A/genética , Apresentação de Antígeno , Pinocitose , Camundongos
2.
Brain ; 147(3): 839-848, 2024 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-38123517

RESUMO

Intrathecal IgM production in multiple sclerosis is associated with a worse disease course. To investigate pathogenic relevance of autoreactive IgM in multiple sclerosis, CSF from two independent cohorts, including multiple sclerosis patients and controls, were screened for antibody binding to induced pluripotent stem cell-derived neurons and astrocytes, and a panel of CNS-related cell lines. IgM binding to a primitive neuro-ectodermal tumour cell line discriminated 10% of multiple sclerosis donors from controls. Transcriptomes of single IgM producing CSF B cells from patients with cell-binding IgM were sequenced and used to produce recombinant monoclonal antibodies for characterization and antigen identification. We produced five cell-binding recombinant IgM antibodies, of which one, cloned from an HLA-DR + plasma-like B cell, mediated antigen-dependent complement activation. Immunoprecipitation and mass spectrometry, and biochemical and transcriptome analysis of the target cells identified the iron transport scavenger protein SCARA5 as the antigen target of this antibody. Intrathecal injection of a SCARA5 antibody led to an increased T cell infiltration in an experimental autoimmune encephalomyelitis (EAE) model. CSF IgM might contribute to CNS inflammation in multiple sclerosis by binding to cell surface antigens like SCARA5 and activating complement, or by facilitating immune cell migration into the brain.


Assuntos
Encefalomielite Autoimune Experimental , Imunoglobulina M , Esclerose Múltipla , Receptores Depuradores Classe A , Animais , Humanos , Anticorpos Monoclonais , Linhagem Celular Tumoral , Imunoglobulina M/líquido cefalorraquidiano , Proteínas de Membrana Transportadoras , Esclerose Múltipla/líquido cefalorraquidiano , Esclerose Múltipla/imunologia , Receptores Depuradores Classe A/imunologia
3.
Proc Natl Acad Sci U S A ; 118(10)2021 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-33649219

RESUMO

Infiltration of tumor-promoting immune cells is a strong driver of tumor progression. Especially the accumulation of macrophages in the tumor microenvironment is known to facilitate tumor growth and to correlate with poor prognosis in many tumor types. TAp73, a member of the p53/p63/p73 family, acts as a tumor suppressor and has been shown to suppress tumor angiogenesis. However, what role TAp73 has in regulating immune cell infiltration is unknown. Here, we report that low levels of TAp73 correlate with an increased NF-κB-regulated inflammatory signature in breast cancer. Furthermore, we show that loss of TAp73 results in NF-κB hyperactivation and secretion of Ccl2, a known NF-κB target and chemoattractant for monocytes and macrophages. Importantly, TAp73-deficient tumors display an increased accumulation of protumoral macrophages that express the mannose receptor (CD206) and scavenger receptor A (CD204) compared to controls. The relevance of TAp73 expression in human breast carcinoma was further accentuated by revealing that TAp73 expression correlates negatively with the accumulation of protumoral CD163+ macrophages in breast cancer patient samples. Taken together, our findings suggest that TAp73 regulates macrophage accumulation and phenotype in breast cancer through inhibition of the NF-κB pathway.


Assuntos
Neoplasias da Mama/imunologia , NF-kappa B/imunologia , Transdução de Sinais/imunologia , Microambiente Tumoral/imunologia , Proteína Tumoral p73/imunologia , Macrófagos Associados a Tumor/imunologia , Animais , Antígenos CD/imunologia , Antígenos de Diferenciação Mielomonocítica/imunologia , Neoplasias da Mama/patologia , Quimiocina CCL2/imunologia , Feminino , Humanos , Glicoproteínas de Membrana/imunologia , Camundongos , Receptores de Superfície Celular/imunologia , Receptores Imunológicos/imunologia , Receptores Depuradores Classe A/imunologia , Macrófagos Associados a Tumor/patologia
4.
Genomics ; 115(5): 110667, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37315873

RESUMO

Scavenger receptor class A, member 5 (SCARA5) has been identified a novel tumor suppressor in several cancers. However, the functional and underlying mechanism of SCARA5 in bladder cancer (BC) need investigation. Here, we found SCARA5 expression was downregulated in both BC tissues and cell lines. Low SCARA5 in BC tissues was associated with a shorter overall survival. Moreover, SCARA5 overexpression reduced BC cell viability, colony formation, invasion, and migration. Further investigation demonstrated that the expression of SCARA5 was negatively regulated by miR-141. Furthermore, the long non-coding RNA prostate cancer associated transcript 29 (PCAT29) inhibited the proliferation, invasion, and migration of BC cells by sponging miR-141. Luciferase activity assays revealed that PCAT29 targeted miR-141 and miR-141 targeted SCARA5. In conclusion, SCARA5, as a downstream factor of the PCAT29/miR-141 axis, inhibited the proliferation, migration, and invasion of BC cells. These findings provide novel insights into the detailed molecular mechanisms of BC development.


Assuntos
MicroRNAs , RNA Longo não Codificante , Neoplasias da Bexiga Urinária , Masculino , Humanos , Linhagem Celular Tumoral , Proliferação de Células/genética , Genes Supressores de Tumor , Neoplasias da Bexiga Urinária/genética , Neoplasias da Bexiga Urinária/patologia , MicroRNAs/genética , Movimento Celular/genética , RNA Longo não Codificante/genética , Regulação Neoplásica da Expressão Gênica , Receptores Depuradores Classe A/genética , Receptores Depuradores Classe A/metabolismo
5.
Genomics ; 115(4): 110636, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37150230

RESUMO

Colorectal cancer (CRC) is the fourth most frequently diagnosed cancer worldwide. Bone marrow stromal cells (BMSCs) play an essential role in tumor development by secreting exosomes. Scavenger receptor class A member 5 (SCARA5) is a newly identified tumor suppressor. This study aimed to investigate the effects of BMSCs-derived exosomes (BMSCs-Exos) on CRC development and to explore their regulatory mechanisms. BMSCs-Exos showed an oval-shaped, bilayer membrane structure. BMSCs-Exos inhibited growth and motility of CRC cells, while BMSCs-Exos with SCARA5 knockdown significantly promoted cell proliferation and movement. Exosomal SCARA5 also effectively suppressed colorectal tumor growth in mouse xenografts. Further analysis revealed that exosomal SCARA5 inhibited the phosphorylation of protein kinase B and phosphoinositide 3-kinase in both CRC cells and tumors. In conclusion, SCARA5 in BMSCs-Exos inhibited CRC progression by inactivating PI3K/Akt, thus suggesting the potential clinical application of SCARA5-containing BMSCs-Exos for CRC treatment.


Assuntos
Neoplasias Colorretais , Exossomos , Células-Tronco Mesenquimais , MicroRNAs , Humanos , Camundongos , Animais , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Exossomos/metabolismo , Neoplasias Colorretais/metabolismo , Proliferação de Células , Células-Tronco Mesenquimais/metabolismo , MicroRNAs/metabolismo , Receptores Depuradores Classe A/metabolismo
6.
Int J Mol Sci ; 25(7)2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38612803

RESUMO

Immuno-oncology has gained momentum with the approval of antibodies with clinical activities in different indications. Unfortunately, for anti-PD (L)1 agents in monotherapy, only half of the treated population achieves a clinical response. For other agents, such as anti-CTLA4 antibodies, no biomarkers exist, and tolerability can limit administration. In this study, using publicly available genomic datasets, we evaluated the expression of the macrophage scavenger receptor-A (SR-A) (MSR1) and its association with a response to check-point inhibitors (CPI). MSR1 was associated with the presence of macrophages, dendritic cells (DCs) and neutrophils in most of the studied indications. The presence of MSR1 was associated with macrophages with a pro-tumoral phenotype and correlated with TIM3 expression. MSR1 predicted favorable overall survival in patients treated with anti-PD1 (HR: 0.56, FDR: 1%, p = 2.6 × 10-5), anti PD-L1 (HR: 0.66, FDR: 20%, p = 0.00098) and anti-CTLA4 (HR: 0.37, FDR: 1%, p = 4.8 × 10-5). When specifically studying skin cutaneous melanoma (SKCM), we observed similar effects for anti-PD1 (HR: 0.65, FDR: 50%, p = 0.0072) and anti-CTLA4 (HR: 0.35, FDR: 1%, p = 4.1 × 10-5). In a different dataset of SKCM patients, the expression of MSR1 predicted a clinical response to anti-CTLA4 (AUC: 0.61, p = 2.9 × 10-2). Here, we describe the expression of MSR1 in some solid tumors and its association with innate cells and M2 phenotype macrophages. Of note, the presence of MSR1 predicted a response to CPI and, particularly, anti-CTLA4 therapies in different cohorts of patients. Future studies should prospectively explore the association of MSR1 expression and the response to anti-CTLA4 strategies in solid tumors.


Assuntos
Melanoma , Neoplasias Cutâneas , Humanos , Melanoma/tratamento farmacológico , Melanoma/genética , Perfilação da Expressão Gênica , Transcriptoma , Oncologia , Receptores Depuradores Classe A
7.
BMC Genomics ; 24(1): 181, 2023 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-37020267

RESUMO

BACKGROUND: CircRNAs are involved in the pathogenesis of several central nervous system diseases. However, their functions and mechanisms in spinal cord injury (SCI) are still unclear. Therefore, the purpose of this study was to evaluate circRNA and mRNA expression profiles in the pathological setting of SCI and to predict the potential function of circRNA through bioinformatics. METHODS: A microarray-based approach was used for the simultaneous measurement of circRNAs and mRNAs, together with qPCR, fluorescence in situ hybridization, western immunoblotting, and dual-luciferase reporter assays to investigate the associated regulatory mechanisms in a rat SCI model. RESULTS: SCI was found to be associated with the differential expression of 414 and 5337 circRNAs and mRNAs, respectively. Pathway enrichment analyses were used to predict the primary function of these circRNAs and mRNAs. GSEA analysis showed that differentially expressed mRNAs were primarily associated with inflammatory immune response activity. Further screening of these inflammation-associated genes was used to construct and analyze a competing endogenous RNA network. RNO_CIRCpedia_4214 was knocked down in vitro, resulting in reduced expression of Msr1, while the expression of RNO-miR-667-5p and Arg1 was increased. Dual-luciferase assays demonstrated that RNO_CIRCpedia_4214 bound to RNO-miR-667-5p. The RNO_CIRCpedia_4214/RNO-miR-667-5p/Msr1 axis may be a potential ceRNA that promotes macrophage M2-like polarization in SCI. CONCLUSION: Overall, these results highlighted the critical role that circRNAs may play in the pathophysiology of SCI and the discovery of a potential ceRNA mechanism based on novel circRNAs that regulates macrophage polarization, providing new targets for the treatment of SCI.


Assuntos
MicroRNAs , Traumatismos da Medula Espinal , Animais , Ratos , Hibridização in Situ Fluorescente , Luciferases/genética , MicroRNAs/genética , RNA Circular/genética , RNA Mensageiro/genética , Traumatismos da Medula Espinal/genética , Receptores Depuradores Classe A/metabolismo
8.
EMBO J ; 38(11)2019 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-31028084

RESUMO

Alternatively activated M2 macrophages play an important role in maintenance of tissue homeostasis by scavenging dead cells, cell debris and lipoprotein aggregates via phagocytosis. Using proteomics, we investigated how alternative activation, driven by IL-4, modulated the phagosomal proteome to control macrophage function. Our data indicate that alternative activation enhances homeostatic functions such as proteolysis, lipolysis and nutrient transport. Intriguingly, we identified the enhanced recruitment of the TAK1/MKK7/JNK signalling complex to phagosomes of IL-4-activated macrophages. The recruitment of this signalling complex was mediated through K63 polyubiquitylation of the macrophage scavenger receptor 1 (MSR1). Triggering of MSR1 in IL-4-activated macrophages leads to enhanced JNK activation, thereby promoting a phenotypic switch from an anti-inflammatory to a pro-inflammatory state, which was abolished upon MSR1 deletion or JNK inhibition. Moreover, MSR1 K63 polyubiquitylation correlated with the activation of JNK signalling in ovarian cancer tissue from human patients, suggesting that it may be relevant for macrophage phenotypic shift in vivo Altogether, we identified that MSR1 signals through JNK via K63 polyubiquitylation and provides evidence for the receptor's involvement in macrophage polarization.


Assuntos
Inflamação , Interleucina-4/farmacologia , Proteínas Quinases JNK Ativadas por Mitógeno/fisiologia , Ativação de Macrófagos , Receptores Depuradores Classe A/agonistas , Receptores Depuradores Classe A/genética , Animais , Polaridade Celular/efeitos dos fármacos , Polaridade Celular/genética , Células Cultivadas , Feminino , Humanos , Inflamação/induzido quimicamente , Inflamação/genética , Inflamação/metabolismo , Mediadores da Inflamação/fisiologia , Lipólise/efeitos dos fármacos , Lipólise/genética , Lipoproteínas LDL/farmacologia , Ativação de Macrófagos/efeitos dos fármacos , Ativação de Macrófagos/genética , Macrófagos/efeitos dos fármacos , Macrófagos/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fagocitose/efeitos dos fármacos , Fagocitose/genética , Polissacarídeos/farmacologia , Processamento de Proteína Pós-Traducional/genética , Células RAW 264.7 , Receptores Depuradores Classe A/química , Receptores Depuradores Classe A/metabolismo , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Ubiquitinação/genética
9.
J Pharmacol Sci ; 151(1): 46-53, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36522122

RESUMO

Atherosclerotic plaques develop from the accumulation of macrophage-derived foam cells via the uptake of modified low-density lipoprotein (LDL). CD36 and CD204 are the principal scavenger receptors responsible for the uptake of modified LDL. Although glucocorticoids are suspected to exacerbate atherosclerosis, the precise mechanisms have not been fully elucidated. We investigated the effects of long-term treatment (2 weeks) with both a natural glucocorticoid (hydrocortisone, HC, 1 µM) and a synthetic glucocorticoid (dexamethasone, Dex, 100 nM) on murine bone marrow-derived macrophages using flow cytometry and western blotting. Treatment with HC and Dex enhanced CD204 expression but not CD36 expression and acetylated LDL (Ac-LDL) uptake. Treatment with HC and Dex also induced the phosphorylation of extracellular signal-regulated kinase (ERK). The Dex-induced enhancement in CD204 expression and Ac-LDL uptake were suppressed by an inhibitor of the mitogen-activated protein kinase (MAPK)/ERK kinase. These results suggest that glucocorticoids activate the MAPK/ERK pathway, which enhances CD204 expression and results in increased uptake of Ac-LDL in macrophages. The MAPK/ERK pathway in macrophages might be a key target to prevent atherosclerosis that is worsened by glucocorticoids.


Assuntos
Aterosclerose , Receptores Depuradores Classe A , Camundongos , Animais , Receptores Depuradores Classe A/metabolismo , Glucocorticoides/farmacologia , Lipoproteínas LDL/metabolismo , Macrófagos/metabolismo , Antígenos CD36/genética , Antígenos CD36/metabolismo , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Aterosclerose/tratamento farmacológico , Aterosclerose/metabolismo
10.
Nature ; 541(7635): 96-101, 2017 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-28002407

RESUMO

Monocytes and macrophages comprise a variety of subsets with diverse functions. It is thought that these cells play a crucial role in homeostasis of peripheral organs, key immunological processes and development of various diseases. Among these diseases, fibrosis is a life-threatening disease of unknown aetiology. Its pathogenesis is poorly understood, and there are few effective therapies. The development of fibrosis is associated with activation of monocytes and macrophages. However, the specific subtypes of monocytes and macrophages that are involved in fibrosis have not yet been identified. Here we show that Ceacam1+Msr1+Ly6C-F4/80-Mac1+ monocytes, which we term segregated-nucleus-containing atypical monocytes (SatM), share granulocyte characteristics, are regulated by CCAAT/enhancer binding protein ß (C/EBPß), and are critical for fibrosis. Cebpb deficiency results in a complete lack of SatM. Furthermore, the development of bleomycin-induced fibrosis, but not inflammation, was prevented in chimaeric mice with Cebpb-/- haematopoietic cells. Adoptive transfer of SatM into Cebpb-/- mice resulted in fibrosis. Notably, SatM are derived from Ly6C-FcεRI+ granulocyte/macrophage progenitors, and a newly identified SatM progenitor downstream of Ly6C-FcεRI+ granulocyte/macrophage progenitors, but not from macrophage/dendritic-cell progenitors. Our results show that SatM are critical for fibrosis and that C/EBPß licenses differentiation of SatM from their committed progenitor.


Assuntos
Proteína beta Intensificadora de Ligação a CCAAT/metabolismo , Células Progenitoras de Granulócitos e Macrófagos/citologia , Monócitos/classificação , Monócitos/metabolismo , Fibrose Pulmonar/patologia , Transferência Adotiva , Animais , Antígenos CD/metabolismo , Antígenos Ly/metabolismo , Biomarcadores/metabolismo , Bleomicina/toxicidade , Proteína beta Intensificadora de Ligação a CCAAT/deficiência , Proteína beta Intensificadora de Ligação a CCAAT/genética , Moléculas de Adesão Celular/metabolismo , Diferenciação Celular , Células Dendríticas/citologia , Modelos Animais de Doenças , Células Progenitoras de Granulócitos e Macrófagos/metabolismo , Granulócitos/citologia , Granulócitos/metabolismo , Inflamação , Masculino , Camundongos , Terapia de Alvo Molecular/tendências , Monócitos/patologia , Monócitos/transplante , Fibrose Pulmonar/induzido quimicamente , Fibrose Pulmonar/genética , Fibrose Pulmonar/prevenção & controle , Receptores de IgE/metabolismo , Receptores Depuradores Classe A/metabolismo
11.
Differentiation ; 128: 83-100, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36114074

RESUMO

Nuclear receptor subfamily 5 group A member 1 (NR5A1) encodes steroidogenic factor 1 (SF1), a key regulatory factor that determines gonadal development and coordinates endocrine functions. Here, we have established a stem cell-based model of human gonadal development and applied it to evaluate the effects of NR5A1 during the transition from bipotential gonad to testicular cells. We combined directed differentiation of human induced pluripotent stem cells (46,XY) with activation of endogenous NR5A1 expression by conditionally-inducible CRISPR activation. The resulting male gonadal-like cells expressed several Sertoli cell transcripts, secreted anti-Müllerian hormone and responded to follicle-stimulating hormone by producing sex steroid intermediates. These characteristics were not induced without NR5A1 activation. A total of 2691 differentially expressed genetic elements, including both coding and non-coding RNAs, were detected immediately following activation of NR5A1 expression. Of those, we identified novel gonad-related putative NR5A1 targets, such as SCARA5, which we validated also by immunocytochemistry. In addition, NR5A1 activation was associated with dynamic expression of multiple gonad- and infertility-related differentially expressed genes. In conclusion, by combining targeted differentiation and endogenous activation of NR5A1 we have for the first time, been able to examine in detail the effects of NR5A1 in early human gonadal cells. The model and results obtained provide a useful resource for future investigations exploring the causative reasons for gonadal dysgenesis and infertility in humans.


Assuntos
Células-Tronco Pluripotentes Induzidas , Infertilidade , Humanos , Masculino , Fator Esteroidogênico 1/genética , Fator Esteroidogênico 1/metabolismo , Mutação , Células-Tronco Pluripotentes Induzidas/metabolismo , Gônadas/metabolismo , Receptores Depuradores Classe A/genética
12.
Int J Mol Sci ; 24(3)2023 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-36769209

RESUMO

In heart failure, the biological and clinical connection between abnormal iron homeostasis, myocardial function, and prognosis is known; however, the expression profiles of iron-linked genes both at myocardial tissue and single-cell level are not well defined. Through publicly available bulk and single-nucleus RNA sequencing (RNA-seq) datasets of left ventricle samples from adult non-failed (NF) and dilated cardiomyopathy (DCM) subjects, we aim to evaluate the altered iron metabolism in a diseased condition, at the whole cardiac tissue and single-cell level. From the bulk RNA-seq data, we found 223 iron-linked genes expressed at the myocardial tissue level and 44 differentially expressed between DCM and NF subjects. At the single-cell level, at least 18 iron-linked expressed genes were significantly regulated in DCM when compared to NF subjects. Specifically, the iron metabolism in DCM cardiomyocytes is altered at several levels, including: (1) imbalance of Fe3+ internalization (SCARA5 down-regulation) and reduction of internal conversion from Fe3+ to Fe2+ (STEAP3 down-regulation), (2) increase of iron consumption to produce hemoglobin (HBA1/2 up-regulation), (3) higher heme synthesis and externalization (ALAS2 and ABCG2 up-regulation), (4) lower cleavage of heme to Fe2+, biliverdin and carbon monoxide (HMOX2 down-regulation), and (5) positive regulation of hepcidin (BMP6 up-regulation).


Assuntos
Cardiomiopatia Dilatada , Insuficiência Cardíaca , Adulto , Humanos , Cardiomiopatia Dilatada/metabolismo , Miocárdio/metabolismo , Regulação para Baixo , Miócitos Cardíacos/metabolismo , Insuficiência Cardíaca/metabolismo , 5-Aminolevulinato Sintetase/genética , Receptores Depuradores Classe A/genética
13.
Int J Mol Sci ; 24(3)2023 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-36768908

RESUMO

Hydrocephalus has been observed in rats with spontaneous hypertension (SHRs). It has been demonstrated that activation of the oxidative stress related protein retinoic acid receptor alpha (RARα) has neuroprotective impacts. Our investigation aims to determine the potential role and mechanism of RARα in hydrocephalus. The RARα-specific agonist (Am80) and RARα inhibitor (AGN196996) were used to investigate the role of RARα in cerebrospinal fluid (CSF) secretion in the choroid plexus of SHRs. Evaluations of CSF secretion, ventricular volume, Western blotting, and immunofluorescent staining were performed. Hydrocephalus and CSF hypersecretion were identified in SHRs but not in Wistar-Kyoto rats, occurring at the age of 7 weeks. The RARα/MAFB/MSR1 pathway was also activated in SHRs. Therapy with Am80 beginning in week 5 decreased CSF hypersecretion, hydrocephalus development, and pathological changes in choroid plexus alterations by week 7. AGN196996 abolished the effect of Am80. In conclusion, activation of the RARα attenuated CSF hypersecretion to inhibit hydrocephalus development via regulating the MAFB/MSR1 pathway. RARα may act as a possible therapeutic target for hydrocephalus.


Assuntos
Hidrocefalia , Hipertensão , Animais , Ratos , Plexo Corióideo/metabolismo , Hidrocefalia/metabolismo , Hipertensão/metabolismo , Fator de Transcrição MafB/metabolismo , Proteínas Oncogênicas/metabolismo , Ratos Endogâmicos SHR , Ratos Endogâmicos WKY , Receptores Depuradores Classe A/metabolismo
14.
J Biol Chem ; 297(2): 100948, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34252459

RESUMO

Scavenger receptor class A (SR-A) proteins are type II transmembrane glycoproteins that form homotrimers on the cell surface. This family has five known members (SCARA1 to 5, or SR-A1 to A5) that recognize a variety of ligands and are involved in multiple biological pathways. Previous reports have shown that some SR-A family members can bind modified low-density lipoproteins (LDLs); however, the mechanisms of the interactions between the SR-A members and these lipoproteins are not fully understood. Here, we systematically characterize the recognition of SR-A receptors with lipoproteins and report that SCARA1 (SR-A1, CD204), MARCO (SCARA2), and SCARA5 recognize acetylated or oxidized LDL and very-low-density lipoprotein in a Ca2+-dependent manner through their C-terminal scavenger receptor cysteine-rich (SRCR) domains. These interactions occur specifically between the SRCR domains and the modified apolipoprotein B component of the lipoproteins, suggesting that they might share a similar mechanism for lipoprotein recognition. Meanwhile, SCARA4, a SR-A member with a carbohydrate recognition domain instead of the SRCR domain at the C terminus, shows low affinity for modified LDL and very-low-density lipoprotein but binds in a Ca2+-independent manner. SCARA3, which does not have a globular domain at the C terminus, was found to have no detectable binding with these lipoproteins. Taken together, these results provide mechanistic insights into the interactions between SR-A family members and lipoproteins that may help us understand the roles of SR-A receptors in lipid transport and related diseases such as atherosclerosis.


Assuntos
Lipoproteínas , Receptores Depuradores Classe A , Animais , Células CHO , Cricetulus
15.
Br J Cancer ; 126(4): 606-614, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34782748

RESUMO

BACKGROUND: We examined the relationship between the tumour microenvironment and the clinical efficacy of neoadjuvant chemotherapy in patients with cT2-4aN0M0 bladder cancer using multiplex fluorescence immunohistochemistry. METHODS: The study retrospectively evaluated 51 patients who underwent radical cystectomy following neoadjuvant chemotherapy for cT2-4aN0M0 muscle-invasive bladder cancer. Patients were divided into responders (

Assuntos
Linfócitos T CD8-Positivos/metabolismo , Receptores Depuradores Classe A/metabolismo , Neoplasias da Bexiga Urinária/patologia , Neoplasias da Bexiga Urinária/terapia , Adulto , Idoso , Cistectomia , Tratamento Farmacológico , Feminino , Imunofluorescência , Humanos , Masculino , Pessoa de Meia-Idade , Terapia Neoadjuvante , Estadiamento de Neoplasias , Prognóstico , Estudos Retrospectivos , Análise de Sobrevida , Resultado do Tratamento , Microambiente Tumoral , Neoplasias da Bexiga Urinária/imunologia
16.
Cell Immunol ; 372: 104483, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35085880

RESUMO

The occurring in SR-A/CD204- or CD36-deficient mice increased susceptibility to infections with Staphylococcus aureus (Sa) had traditionally been ascribed to the impairment of macrophage-mediated phagocytosis, which is, however, inconsistent with low effectiveness of unopsonized Sa killing within macrophages and redundant roles of both receptors in this process. We have found that Sa-stimulated cytokine production in mouse macrophages seems to be exclusively mediated by TLR2, mainly from within endosomes in response to Sa-derived lipoteichoic acid. By driving endocytic trafficking of TLR2 and its ligands through the clathrin-dependent pathway, CD36 and SR-A sensitize macrophages to activation by Sa as well as regulate the type and amount of cytokines produced. Additionally, upon direct Sa binding, both receptors autonomously generate anti-inflammatory signaling. Consequently, the delayed induction of acute inflammation in knockout mice may allow for the initial, uncontrolled multiplication of bacteria, stimulating excessive, septic shock-inducing production of inflammatory cytokines in later stages of infection.


Assuntos
Antígenos CD36/imunologia , Citocinas/biossíntese , Macrófagos Peritoneais/imunologia , Macrófagos Peritoneais/microbiologia , Receptores Depuradores Classe A/imunologia , Staphylococcus aureus/imunologia , Staphylococcus aureus/patogenicidade , Animais , Antígenos CD36/deficiência , Antígenos CD36/genética , Endocitose/imunologia , Ligantes , Receptores de Lipopolissacarídeos/imunologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Receptores de Reconhecimento de Padrão/imunologia , Receptores Depuradores Classe A/deficiência , Receptores Depuradores Classe A/genética , Transdução de Sinais/imunologia , Receptor 2 Toll-Like/imunologia
17.
Cytometry A ; 101(8): 675-681, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35524584

RESUMO

Dermal papilla (DP) cells regulate hair follicle epithelial cells and melanocytes by secreting functional factors, playing a key role in hair follicle morphogenesis and hair growth. DP cells can reconstitute new hair follicles and induce hair regeneration, providing a potential therapeutic strategy for treating hair loss. However, current methods for isolating DP cells are either inefficient (physical microdissection) or only applied to genetically labeled mice. We systematically screened for the surface proteins specifically expressed in skin DP using mRNA expression databases. We identified two antibodies against receptors LEPTIN Receptor (LEPR ) and Scavenger Receptor Class A Member 5 (SCARA5) which could specifically label and isolate DP cells by flow cytometry from mice back skin at the growth phase. The sorted LEPR+ cells maintained the DP characteristics after culturing in vitro, expressing DP marker alkaline phosphatase and functional factors including RSPO1/2 and EDN3, the three major DP secretory factors that regulate hair follicle epithelial cells and melanocytes. Furthermore, the low-passage LEPR+ DP cells could reconstitute hair follicles on nude mice using chamber graft assay when combined with epithelial stem cells. The method of isolating functional DP cells we established here lays a solid foundation for developing DP cell-based therapy.


Assuntos
Derme , Receptores para Leptina , Animais , Células Cultivadas , Derme/metabolismo , Cabelo/metabolismo , Folículo Piloso , Camundongos , Camundongos Nus , Receptores para Leptina/genética , Receptores para Leptina/metabolismo , Receptores Depuradores Classe A/metabolismo
18.
Microvasc Res ; 140: 104276, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34742813

RESUMO

PURPOSE: We previously reported that a calpain inhibitor (CAI) prevents the development of atherosclerosis in rats. This study aimed to investigate the effects of CAI (1 mg/kg) on atherosclerosis in apolipoprotein E knockout (ApoE KO) mice that were fed a high-fat diet (HFD) and explore the underlying mechanism by analyzing the expression of genes related to the uptake and efflux of cholesterol. METHODS: Atherosclerotic plaques were evaluated. The activity of calpain in the aorta and that of superoxide dismutase (SOD) in the serum were assessed. Lipid profiles in the serum and liver were examined. Serum oxidized low-density lipoprotein (oxLDL), malondialdehyde (MDA), tumor necrosis factor (TNF-α), and interleukin-6 (IL-6) levels were measured. The mRNA expressions of CD68, TNF-α, IL-6, CD36, scavenger receptor (SR-A), peroxisome proliferator-activated receptor gamma (PPAR-γ), liver-x-receptor alpha (LXR-α), and ATP-binding cassette transporter class A1 (ABCA1) in the aorta and peritoneal macrophages were also evaluated. RESULTS: CAI reduced calpain activity in the aorta. CAI also impeded atherosclerotic lesion formation and mRNA expression of CD68 in the aorta and peritoneal macrophages of ApoE KO mice compared with those of mice receiving HFD. However, CAI had no effect on body weight and lipid levels in both the serum and liver. CAI significantly decreased MDA, oxLDL, TNF-α, and IL-6 levels and increased SOD activity in the serum. Moreover, CAI significantly inhibited the mRNA expression of TNF-α and IL-6 genes in the aorta and peritoneal macrophages. In addition, CAI significantly downregulated the mRNA expression of scavenger receptors CD36 and SR-A and upregulated the expression of genes involved in the cholesterol efflux pathway, i.e., PPAR-γ, LXR-α, and ABCA1 in the aorta and peritoneal macrophages. CONCLUSIONS: CAI inhibited the development of atherosclerotic lesions in ApoE KO mice, and this effect might be related to the reduction of oxidative stress and inflammation and the improvement of cholesterol intake and efflux pathways.


Assuntos
Aorta/efeitos dos fármacos , Doenças da Aorta/prevenção & controle , Aterosclerose/prevenção & controle , Calpaína/antagonistas & inibidores , Colesterol/metabolismo , Inibidores de Cisteína Proteinase/farmacologia , Leupeptinas/farmacologia , Metabolismo dos Lipídeos/efeitos dos fármacos , Macrófagos Peritoneais/efeitos dos fármacos , RNA Mensageiro/metabolismo , Transportador 1 de Cassete de Ligação de ATP/genética , Transportador 1 de Cassete de Ligação de ATP/metabolismo , Animais , Antígenos CD/genética , Antígenos CD/metabolismo , Antígenos de Diferenciação Mielomonocítica/genética , Antígenos de Diferenciação Mielomonocítica/metabolismo , Aorta/enzimologia , Aorta/patologia , Doenças da Aorta/enzimologia , Doenças da Aorta/genética , Doenças da Aorta/patologia , Aterosclerose/enzimologia , Aterosclerose/genética , Aterosclerose/patologia , Calpaína/metabolismo , Modelos Animais de Doenças , Regulação da Expressão Gênica , Metabolismo dos Lipídeos/genética , Receptores X do Fígado/genética , Receptores X do Fígado/metabolismo , Macrófagos Peritoneais/enzimologia , Macrófagos Peritoneais/patologia , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout para ApoE , PPAR gama/genética , PPAR gama/metabolismo , Placa Aterosclerótica , RNA Mensageiro/genética , Receptores Depuradores Classe A/genética , Receptores Depuradores Classe A/metabolismo
19.
BMC Cancer ; 22(1): 1304, 2022 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-36513999

RESUMO

BACKGROUND: Esophageal squamous cell carcinoma (ESCC) remains one of the most lethal cancers worldwide accompany with an extremely poor prognosis. Therefore, this study aims to screen for new molecules affecting ESCC and explore their mechanisms of action to provide ideas for targeted therapies for ESCC. METHODS: Firstly, we screened out the membrane protein SCARA5 by high-throughput sequencing of the ESCC patient tissues, and RT-qPCR and WB were used to verify the differential expression of SCARA5 in esophageal cell lines, and IHC analyzed the expression localization of SCARA5 in ESCC tissue. Then, flow cytometry, wound healing assay, Transwell assay and CCK-8 assay were used to explore the effects of SCARA5 on cell cycle, migration and invasion as well as cell proliferation activity of esophageal squamous carcinoma cells. Meanwhile, transmission electron microscopy was used to detect changes in cellular mitochondrial morphology, and flow cytometry were used to detect changes in intracellular reactive oxygen metabolism, and immunofluorescence and flow cytometry were used to detect changes in intracellular Fe2+. Mechanistically, co-immunoprecipitation was used to detect whether SCARA5 binds to ferritin light chain, and ferroptosis-related protein expression was detected by WB. Finally, the tumor xenograft model was applied to validation the role of SCARA5 tumor growth inhibition in vivo. RESULTS: We found that SCARA5 was aberrantly decreased in ESCC tissues and cell lines. Furthermore, we confirmed that SCARA5 suppressed the cell cycle, metastasis and invasion of ESCC cells. Meanwhile, we also found that overexpression of SCARA5 caused changes in mitochondrial morphology, accumulation of intracellular reactive oxygen species and increased intracellular Fe2+ in ESCC cells, which induced ferroptosis in ESCC cells. Mechanically, we validated that SCARA5 combined with ferritin light chain and increased intracellular Fe2+. As well as, overexpression SCARA5 induced ferroptosis by increasing ferritin light chain in nude mice subcutaneous tumors and inhibited the growth of nude mice subcutaneous tumors. CONCLUSION: Collectively, our findings demonstrated that SCARA5 suppressed the proliferation and metastasis of ESCC by triggering ferroptosis through combining with ferritin light chain.


Assuntos
Neoplasias Esofágicas , Carcinoma de Células Escamosas do Esôfago , Ferroptose , Receptores Depuradores Classe A , Animais , Humanos , Camundongos , Apoferritinas/genética , Apoferritinas/metabolismo , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Neoplasias Esofágicas/patologia , Carcinoma de Células Escamosas do Esôfago/patologia , Regulação Neoplásica da Expressão Gênica , Camundongos Nus
20.
BMC Cancer ; 22(1): 552, 2022 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-35578316

RESUMO

BACKGROUND: Scavenger receptor class A member 3 (SCARA3) is decreased in prostate cancer and myeloma. However, functions of SCARA3 in various cancers remain unclear. In this study, we tried to evaluate the functional study of SCARA3 in lung cancer. METHODS: The expression level of SCARA3 in the TCGA-database, lung cancer tissue microarray and lung cancer cells and the prognosis of lung cancer patients were measured. Lung cancer tissue microarray was analyzed pathologically using immunohistochemistry, and quantitative analysis of SCARA3 in normal lung cells and lung cancer cells was analyzed using western blot analysis. Survival curves for lung cancer patients were prepared with the Kaplan-Meier method. Migration and invasion of SCARA3 overexpressed lung cancer cells were determined using a Transwell chamber system. Proliferation of lung cancer cells was determined based on cell viability assay using cell culture in vitro and a tumorigenicity model of BALB/C nude mouse in vivo. RESULTS: The expression of SCARA3 was abnormally reduced in TCGA-database, lung tissue microarray, and various lung cancer cells. However, overexpression of SCARA3 reduced the proliferation of lung cancer. The ability of SCARA3 to inhibit cancer cell proliferation was maintained even in vivo using a mouse xenograft model. In addition, overexpression of SCARA3 reduced migration and invasion ability of lung cancer cells and induced decreases of EMT markers such as ß-catenin, vimentin, and MMP9. We aimed to prove the role of SCARA3 in the treatment of Lung cancer, and shown that the expression level of SCARA3 is important in cancer treatment using cisplatin. The enhancement of the effect of cisplatin according to SCARA3 overexpression is via the AKT and JNK pathways. CONCLUSIONS: This study confirmed an abnormal decrease in SCARA3 in lung cancer. Overexpression of SCARA3 potently inhibited tumors in lung cancer and induced apoptosis by increasing sensitivity of lung cancer to cisplatin. These results suggest that SCARA3 is a major biomarker of lung cancer and that the induction of SCARA3 overexpression can indicate an effective treatment.


Assuntos
Neoplasias Pulmonares , Proteínas Proto-Oncogênicas c-akt , Animais , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Cisplatino/farmacologia , Transição Epitelial-Mesenquimal , Regulação Neoplásica da Expressão Gênica , Proteínas de Choque Térmico/metabolismo , Humanos , Neoplasias Pulmonares/patologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Proteínas Proto-Oncogênicas c-akt/metabolismo , Receptores Depuradores Classe A , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA