RESUMO
Through an exhaustive homology-based approach, coupled with manual efforts, we annotated and characterized 128 sensory neuron membrane proteins (SNMPs) from genomes and transcriptomes of 22 coleopteran species, with 107 novel candidates. Remarkably, we discovered, for the first time, a novel SNMP group, defined as Group 4 based on the phylogeny, sequence characteristics, gene structure and organization. The lineage-specific expansions in SNMPs occurred mainly in the family Scarabaeidae, harboring 12 representatives in Onthophagus taurus as a typical gene duplication and the most massive set of SNMPs in insects to date. Transcriptome sequencing of Rhaphuma horsfieldi resulted in the yields of approximately 611.9 million clean reads that were further assembled into 543,841 transcripts and 327,550 unigenes, respectively. From the transcriptome, 177 transcripts encoding 84 odorant (ORs), 62 gustatory (GRs), 20 ionotropic (IRs), and 11 ionotropic glutamate (iGluRs) receptors were identified. Phylogenetic analysis classified RhorORs into six groups, RhorGRs into four subfamilies, and RhorIRs into 10 conserved antennal IRs and one divergent IRs. Expression profiles revealed that over 80% of chemosensory genes were specifically or highly transcribed in antennae or tarsi, suggestive of their olfactory and/or gustatory roles. This study has greatly complemented the resources for chemosensory genes in the cerambycid beetles, and most importantly, identifies a novel group of SNMPs in Coleoptera.
Assuntos
Besouros/genética , Proteínas de Insetos/genética , Proteínas de Membrana/genética , Proteínas do Tecido Nervoso/genética , Receptores de Superfície Celular/genética , Animais , Feminino , Genes de Insetos , Genoma de Inseto , Proteínas de Insetos/classificação , Masculino , Proteínas de Membrana/classificação , Família Multigênica , Proteínas do Tecido Nervoso/classificação , Filogenia , Receptores Odorantes/classificação , Receptores Odorantes/genética , TranscriptomaRESUMO
The parasitoid of whiteflies Encarsia formosa has been widely applied to reduce whitefly-mediated damage on vegetables and ornamental plants grown in greenhouses. Although its chemosensory behavior has been described, the mechanism by which E. formosa recognizes chemical volatiles at the molecular level remains unknown. In this study, we obtained 66,632 unigenes from antennae transcriptomic architecture of E. formosa, of which 19,473 (29.2%) were functionally annotated. All that matters is that we manually identified 39 odorant-binding proteins (OBPs) from above dataset, and further investigated the tissue and stage-specific expression profiles of all identified OBP genes by real-time quantitative PCR. Among these OBP genes, 32 were enriched in antennae, and 2 in body. In addition, 4 OBPs were highly expressed in pupae, and 32 in 6-hour-age adults after eclosion. In addition to identifying OBP genes from E. formosa, this study provides a molecular basis for further functional studies of OBPs and the interactions of hosts and parasitic wasps.
Assuntos
Antenas de Artrópodes/metabolismo , Proteínas de Insetos/genética , Receptores Odorantes/genética , Vespas/genética , Animais , Antenas de Artrópodes/crescimento & desenvolvimento , Sequenciamento de Nucleotídeos em Larga Escala , Proteínas de Insetos/classificação , Proteínas de Insetos/metabolismo , Filogenia , RNA-Seq , Receptores Odorantes/classificação , Receptores Odorantes/metabolismo , Transcriptoma , Vespas/crescimento & desenvolvimento , Vespas/metabolismoRESUMO
Odorant receptors represent the largest family of mammalian G protein-coupled receptors. Phylogenetically, they are split into two classes (I and II). By analyzing the entire subclass I odorant receptors sequences, we identified two class I-specific and highly conserved motifs. These are predicted to face each other at the extra-cellular portion of the transmembrane domain, forming a vestibular site at the entrance to the orthosteric-binding cavity. Molecular dynamics simulation combined with site-directed mutagenesis and in vitro functional assays confirm the functional role of this vestibular site in ligand-driven activation. Mutations at this part of the receptor differentially affect the receptor response to four agonists. Since this vestibular site is involved in ligand recognition, it could serve ligand design that targets specifically this sub-genome of mammalian odorant receptors.
Assuntos
Receptores Odorantes/química , Motivos de Aminoácidos , Sítios de Ligação , Sequência Conservada , Humanos , Modelos Moleculares , Simulação de Dinâmica Molecular , Receptores Odorantes/agonistas , Receptores Odorantes/classificação , Receptores Odorantes/genéticaRESUMO
This article introduces an alignment-free clustering method in order to cluster all the 66 DORs sequentially diverse protein sequences. Two different methods are discussed: one is utilizing twenty standard amino acids (without grouping) and another one is using chemical grouping of amino acids (with grouping). Two grayscale images (representing two protein sequences by order pair frequency matrices) are compared to find the similarity index using morphology technique. We could achieve the correlation coefficients of 0.9734 and 0.9403 for without and with grouping methods respectively with the ClustalW result in the ND5 dataset, which are much better than some of the existing alignment-free methods. Based on the similarity index, the 66 DORs are clustered into three classes - Highest, Moderate and Lowest - which are seen to be best fitted for 66 DORs protein sequences. OR83b is the distinguished olfactory receptor expressed in divergent insect population which is substantiated through our investigation.
Assuntos
Proteínas de Drosophila/química , Receptores Odorantes/química , Alinhamento de Sequência/métodos , Animais , Análise por Conglomerados , Proteínas de Drosophila/classificação , Proteínas de Drosophila/genética , Drosophila melanogaster , Filogenia , Receptores Odorantes/classificação , Receptores Odorantes/genéticaRESUMO
BACKGROUND: The oriental armyworm, Mythimna separata, is an economically important and common Lepidopteran pest of cereal crops. Chemoreception plays a key role in insect life, such as foraging, oviposition site selection, and mating partners. To better understand the chemosensory mechanisms in M. separata, transcriptomic analysis of antennae, labial palps, and proboscises were conducted using next-generation sequencing technology to identify members of the major chemosensory related genes. RESULTS: In this study, 62 putative odorant receptors (OR), 20 ionotropic receptors (IR), 16 gustatory receptors (GR), 38 odorant binding proteins (OBP), 26 chemosensory proteins (CSP), and 2 sensory neuron membrane proteins (SNMP) were identified in M. separata by bioinformatics analysis. Phylogenetic analysis of these candidate proteins was performed. Differentially expressed genes (DEGs) analysis was used to determine the expressions of all candidate chemosensory genes and then the expression profiles of the three families of receptor genes were confirmed by real-time quantitative RT-PCR (qPCR). CONCLUSIONS: The important genes for chemoreception have now been identified in M. separata. This study will provide valuable information for further functional studies of chemoreception mechanisms in this important agricultural pest.
Assuntos
Dípteros/genética , Perfilação da Expressão Gênica , Animais , Antenas de Artrópodes/metabolismo , Feminino , Proteínas de Insetos/classificação , Proteínas de Insetos/genética , Masculino , Proteínas de Membrana/classificação , Proteínas de Membrana/genética , Proteínas do Tecido Nervoso/classificação , Proteínas do Tecido Nervoso/genética , Filogenia , RNA/química , RNA/isolamento & purificação , RNA/metabolismo , Receptores Ionotrópicos de Glutamato/classificação , Receptores Ionotrópicos de Glutamato/genética , Receptores Odorantes/classificação , Receptores Odorantes/genética , Análise de Sequência de RNA , TranscriptomaRESUMO
Chirality is a common phenomenon within odorants. Most pairs of enantiomers show only moderate differences in odor quality. One example for enantiomers that are easily discriminated by their odor quality is the carvones: humans significantly distinguish between the spearmint-like (R)-(-)-carvone and caraway-like (S)-(+)-carvone enantiomers. Moreover, for the (R)-(-)-carvone, an anosmia is observed in about 8% of the population, suggesting enantioselective odorant receptors (ORs). With only about 15% de-orphaned human ORs, the lack of OR crystal structures, and few comprehensive studies combining in silico and experimental approaches to elucidate structure-function relations of ORs, knowledge on cognate odorant/OR interactions is still sparse. An adjusted homology modeling approach considering OR-specific proline-caused conformations, odorant docking studies, single-nucleotide polymorphism (SNP) analysis, site-directed mutagenesis, and subsequent functional studies with recombinant ORs in a cell-based, real-time luminescence assay revealed 11 amino acid positions to constitute an enantioselective binding pocket necessary for a carvone function in human OR1A1 and murine Olfr43, respectively. Here, we identified enantioselective molecular determinants in both ORs that discriminate between minty and caraway odor. Comparison with orthologs from 36 mammalian species demonstrated a hominid-specific carvone binding pocket with about 100% conservation. Moreover, we identified loss-of-function SNPs associated with the carvone binding pocket of OR1A1. Given carvone enantiomer-specific receptor activation patterns including OR1A1, our data suggest OR1A1 as a candidate receptor for constituting a carvone enantioselective phenotype, which may help to explain mechanisms underlying a (R)-(-)-carvone-specific anosmia in humans.
Assuntos
Monoterpenos/metabolismo , Receptores Odorantes/metabolismo , Sequência de Aminoácidos , Animais , Sítios de Ligação , Bovinos , Clonagem Molecular , Monoterpenos Cicloexânicos , Células HEK293 , Humanos , Camundongos , Simulação de Acoplamento Molecular , Monoterpenos/química , Mutagênese Sítio-Dirigida , Filogenia , Estrutura Terciária de Proteína , Receptores Odorantes/química , Receptores Odorantes/classificação , Receptores Odorantes/genética , Análise de Sequência de DNA , EstereoisomerismoRESUMO
This review summarizes our present knowledge of chemoreceptor proteins in crustaceans, using a comparative perspective to review these molecules in crustaceans relative to other metazoan models of chemoreception including mammals, insects, nematodes, and molluscs. Evolution has resulted in unique expansions of specific gene families and repurposing of them for chemosensation in various clades, including crustaceans. A major class of chemoreceptor proteins across crustaceans is the Ionotropic Receptors, which diversified from ionotropic glutamate receptors in ancient protostomes but which are not present in deuterostomes. Representatives of another major class of chemoreceptor proteins-the Grl/GR/OR family of ionotropic 7-transmembrane receptors-are diversified in insects but to date have been reported in only one crustacean species, Daphnia pulex So far, canonic 7-transmembrane G-protein coupled receptors, the principal chemoreceptors in vertebrates and reported in a few protostome clades, have not been identified in crustaceans. More types of chemoreceptors are known throughout the metazoans and might well be expected to be discovered in crustaceans. Our review also provides a comparative coverage of perireceptor events in crustacean chemoreception, including molecules involved in stimulus acquisition, stimulus delivery, and stimulus removal, though much less is known about these events in crustaceans, particularly at the molecular level.
Assuntos
Crustáceos/metabolismo , Receptores Ionotrópicos de Glutamato/metabolismo , Receptores Odorantes/metabolismo , Animais , Evolução Molecular , Insetos/metabolismo , Receptores de Superfície Celular/classificação , Receptores de Superfície Celular/metabolismo , Receptores Acoplados a Guanilato Ciclase/metabolismo , Receptores Odorantes/classificação , OlfatoRESUMO
Locusts represent the excellent model of insect olfaction because the animals are equipped with an unusual olfactory system and display remarkable density-dependent olfactory plasticity. However, information regarding receptor molecules involved in the olfactory perception of locusts is very limited. On the basis of genome sequence and antennal transcriptome of the migratory locust, we conduct the identification and functional analysis of two olfactory receptor families: odorant receptors (ORs) and ionotropic receptors (IRs). In the migratory locust, there is an expansion of OR family (142 ORs) while distinctly lower number of IR genes (32 IRs) compared to the repertoires of other insects. The number of the locust OR genes is much less than that of glomeruli in antennal lobe, challenging the general principle of the "one glomerulus-one receptor" observed in other insects. Most OR genes are found in tandem arrays, forming two large lineage-specific subfamilies in the phylogenetic tree. The "divergent IR" subfamily displays a significant contraction, and most of the IRs belong to the "antennal IR" subfamily in the locust. Most ORs/IRs have olfactory-specific expression while some broadly- or internal-expressed members are also found. Differing from holometabolous insects, the migratory locust contains very similar expression profiles of ORs/IRs between nymph and adult stages. RNA interference and behavioral assays indicate that an OR-based signaling pathway, not IR-based, mediates the attraction of locusts to aggregation pheromones. These discoveries provide insights into the unusual olfactory system of locusts and enhance our understanding of the evolution of insect olfaction.
Assuntos
Proteínas de Insetos/genética , Locusta migratoria/genética , Bulbo Olfatório/metabolismo , Receptores Odorantes/genética , Sequência de Aminoácidos , Animais , Antenas de Artrópodes/metabolismo , Antenas de Artrópodes/fisiologia , Feminino , Perfilação da Expressão Gênica , Proteínas de Insetos/classificação , Proteínas de Insetos/fisiologia , Locusta migratoria/fisiologia , Masculino , Dados de Sequência Molecular , Família Multigênica/genética , Bulbo Olfatório/fisiologia , Filogenia , Isoformas de Proteínas/classificação , Isoformas de Proteínas/genética , Isoformas de Proteínas/fisiologia , Receptores Ionotrópicos de Glutamato/genética , Receptores Ionotrópicos de Glutamato/fisiologia , Receptores Odorantes/classificação , Receptores Odorantes/fisiologia , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Homologia de Sequência de Aminoácidos , Olfato/genética , Olfato/fisiologia , Transcriptoma/genéticaRESUMO
The insect chemoreceptor superfamily consists of 2 gene families, the highly diverse gustatory receptors (GRs) found in all arthropods with sequenced genomes and the odorant receptors that evolved from a GR lineage and have been found only in insects to date. Here, I describe relatives of the insect chemoreceptor superfamily, specifically the basal GR family, in diverse other animals, showing that the superfamily dates back at least to early animal evolution. GR-Like (GRL) genes are present in the genomes of the placozoan Trichoplax adhaerens, an anemone Nematostella vectensis, a coral Acropora digitifera, a polychaete Capitella teleta, a leech Helobdella robusta, the nematode Caenorhabditis elegans (and many other nematodes), 3 molluscs (a limpet Lottia gigantea, an oyster Crassostrea gigas, and the sea hare Aplysia californica), the sea urchin Strongylocentrotus purpuratus, and the sea acorn Saccoglossus kowalevskii. While some of these animals contain multiple divergent GRL lineages, GRLs have been lost entirely from other animal lineages such as vertebrates. GRLs are absent from the ctenophore Mnemiopsis leidyi, the demosponge Amphimedon queenslandica, and 2 available chaonoflagellate genomes, so it remains unclear whether this superfamily originated before or during animal evolution.
Assuntos
Genoma de Inseto , Proteínas de Insetos/metabolismo , Insetos/genética , Receptores Odorantes/metabolismo , Animais , Evolução Molecular , Proteínas de Insetos/classificação , Proteínas de Insetos/genética , Filogenia , Receptores Odorantes/classificação , Receptores Odorantes/genéticaRESUMO
BACKGROUND: To help understand the molecular mechanisms underlying the remarkable phenotypic diversity displayed by cichlids, the genome sequences of O. niloticus, P. nyererei, H. burtoni, N. brichardi and M. zebra were recently determined. Here, we present the contents of the olfactory receptor (OR) repertoires in the genomes of these five fishes. RESULTS: We performed an exhaustive TBLASTN search of the five cichlid genomes to identify their OR repertoires as completely as possible. We used as bait a set of ORs described in the literature. The cichlid repertoires thereby extracted contained large numbers of complete genes (O. niloticus 158; H. burtoni 90; M. zebra 102; N. brichardi 69; P. nyererei 88), a small numbers of pseudogenes and many "edge genes" corresponding to incomplete genes located at the ends of contigs. A phylogenetic tree was constructed and showed these repertoires include a large number of families and subfamilies. It also allowed the identification of a large number of OR analogues between cichlids with very high amino-acid identity (≥ 99%). Nearly 9% of the full-length cichlid OR genes are composed of several coding exons. This is very unusual for vertebrate OR genes. Nevertheless, the evidence is strong, and includes the donor and acceptor splice junction sequences; also, the positions of these genes in the phylogenetic tree indicate that they constitute subfamilies well apart from non-OR G protein-coupled receptor families. CONCLUSIONS: Cichlid OR repertoires are made up of a larger number of genes and fewer pseudogenes than those in other teleosts except zebrafish. These ORs share all identified properties common to all fish ORs; however, the large number of families and subfamilies, each containing few ORs implies that they have evolved more rapidly. This high level of OR diversity is consistent with the substantial phenotypic diversity that characterizes cichlids.
Assuntos
Ciclídeos/genética , Receptores Odorantes/genética , Motivos de Aminoácidos , Animais , Éxons , Peixes/genética , Genoma , Família Multigênica , Filogenia , Receptores Odorantes/química , Receptores Odorantes/classificaçãoRESUMO
BACKGROUND: Chemosensory receptors including olfactory receptors (ORs), gustatory receptors (GRs) and ionotropic receptors (IRs) play a central role in sensing chemical signals and guiding insect behaviours, and are potential target genes in insect pest control. The cotton bollworm Helicoverpa armigera is one of the most destructive pest species that can feed on over 200 different plant species. This diversity of host plants is likely linked to a complex chemosensory system. Here we built on previous work to characterize crucial chemosensory tissues linked to environmental interactions including larval antennae, larval mouthparts and larval fat bodies, as well as male and female adult heads, male and female adult tarsi, and female abdomens. RESULTS: Using transcriptome sequencing, Trinity RNA-seq assemblies and extensive manual curation, we identified a total of 91 candidate chemosensory receptors (60 candidate ORs, 10 GRs and 21 IRs). Thirty-five of these candidates present full-length transcripts. First, we performed in silico differential expression analysis on different sequenced tissues. Further, we created extensive expression profiles using reverse transcription (RT)-PCR on a variety of adult and larval stages. We found that the expression profile of HarmOR51 was limited to adult male antenna suggesting a role in mating that was further supported by a phylogenetic analysis clustering it into the pheromone receptor clade. HarmOR51 in calcium imaging analysis did not show responses to either of the two H. armigera sex pheromone components (Z9-16:Ald or Z11-16:Ald) inviting a future detailed study. In addition, we found four novel HarmORs (OR1, 53, 54 and 58) that appeared to be larvae-antennal specific. Finally, our expression profiling showed that four "divergent" HarmIRs (IR2, 7d.1, 7d.2 and 7d.3) were expressed in both adult and larval antennae, suggesting a functional divergence from their Drosophila homologues. CONCLUSIONS: This study explored three chemoreceptor superfamily genes using a curated transcriptomic approach coupled with extensive expression profiling and a more limited functional characterization. Our results have now provided an extensive resource for investigating the chemoreceptor complement of this insect pest, and meanwhile allow for targeted experiments to identify potential molecular targets for pest control and to investigate insect-plant interactions.
Assuntos
Proteínas de Insetos/genética , Mariposas/genética , Receptores Ionotrópicos de Glutamato/genética , Receptores Odorantes/genética , Receptores de Feromônios/genética , Sequência de Aminoácidos , Animais , Análise por Conglomerados , Feminino , Proteínas de Insetos/classificação , Proteínas de Insetos/metabolismo , Larva/genética , Larva/metabolismo , Masculino , Dados de Sequência Molecular , Mariposas/crescimento & desenvolvimento , Filogenia , Ligação Proteica , RNA/química , RNA/genética , RNA/metabolismo , Receptores Ionotrópicos de Glutamato/classificação , Receptores Ionotrópicos de Glutamato/metabolismo , Receptores Odorantes/classificação , Receptores Odorantes/metabolismo , Receptores de Feromônios/classificação , Receptores de Feromônios/metabolismo , Alinhamento de Sequência , Análise de Sequência de RNA , TranscriptomaRESUMO
BACKGROUND: Chemoreception is based on the senses of smell and taste that are crucial for animals to find new food sources, shelter, and mates. The initial step in olfaction involves the translocation of odorants from the periphery through the aqueous lymph of the olfactory sensilla to the odorant receptors most likely by chemosensory proteins (CSPs) or odorant binding proteins (OBPs). RESULTS: To better understand the roles of CSPs and OBPs in a coleopteran pest species, the red flour beetle Tribolium castaneum (Coleoptera, Tenebrionidae), we performed transcriptome analyses of male and female antennae, heads, mouthparts, legs, and bodies, which revealed that all 20 CSPs and 49 of the 50 previously annotated OBPs are transcribed. Only six of the 20 CSP are significantly transcriptionally enriched in the main chemosensory tissues (antenna and/or mouthparts), whereas of the OBPs all eight members of the antenna binding proteins II (ABPII) subgroup, 18 of the 20 classic OBP subgroup, the C + OBP, and only five of the 21 C-OBPs show increased chemosensory tissue expression. By MALDI-TOF-TOF MS protein fingerprinting, we confirmed three CSPs, four ABPIIs, three classic OBPs, and four C-OBPs in the antennae. CONCLUSIONS: Most of the classic OBPs and all ABPIIs are likely involved in chemoreception. A few are also present in other tissues such as odoriferous glands and testes and may be involved in release or transfer of chemical signals. The majority of the CSPs as well as the C-OBPs are not enriched in antennae or mouthparts, suggesting a more general role in the transport of hydrophobic molecules.
Assuntos
Cromossomos/genética , Besouros/genética , Genes de Insetos , Proteínas de Insetos/genética , Receptores Odorantes/genética , Sequência de Aminoácidos , Animais , Antenas de Artrópodes/metabolismo , Mapeamento Cromossômico , Feminino , Perfilação da Expressão Gênica , Proteínas de Insetos/química , Proteínas de Insetos/classificação , Masculino , Anotação de Sequência Molecular , Dados de Sequência Molecular , Filogenia , Polimorfismo de Nucleotídeo Único , RNA/química , RNA/isolamento & purificação , RNA/metabolismo , Receptores Odorantes/química , Receptores Odorantes/classificação , Alinhamento de Sequência , Análise de Sequência de RNA , Olfato/genéticaRESUMO
Odorant binding proteins (OBPs) contribute to the remarkable sensitivity of the insect's olfactory system and play important roles in the olfactory recognition. The orange blossom midge, Sitodiplosis mosellana is a cereal specialist, and utilizes pheromone and host odorant as a cue for its mating and oviposition. However, OBP genes have not been largely identified in S. mosellana. Based on the sequenced transcriptome database, twenty-six OBP genes were identified in S. mosellana for the first time. Phylogenetic analysis revealed that S. mosellana OBP genes are more closely related to Mayetiola destructor OBP genes than to Aedes aegypti OBP genes. Most OBP genes seemed to be antenna-specific, but differentially expressed in male and female antennae. Three OBP genes (OBP9, OBP19 and OBP23) are leg-specific. And also, most OBP genes have higher expression levels in adults. Only one OBP gene (OBP10) has higher expression levels in larval stages. These findings serve as an important basis for understanding the molecular mechanisms of chemosensory perception.
Assuntos
Dípteros/genética , Proteínas de Insetos/genética , Receptores Odorantes/genética , Transcriptoma , Sequência de Aminoácidos , Animais , Sequência de Bases , Dípteros/crescimento & desenvolvimento , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Proteínas de Insetos/classificação , Masculino , Dados de Sequência Molecular , Família Multigênica , Filogenia , Isoformas de Proteínas/genética , Receptores Odorantes/classificação , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Homologia de Sequência de Aminoácidos , Homologia de Sequência do Ácido Nucleico , Fatores SexuaisRESUMO
BACKGROUND: Olfaction in animals is important for host localization, mating and reproduction in heterogeneous chemical environments. Studying the molecular basis of olfactory receptor neurons (ORNs) systems can elucidate the evolution of olfaction and associated behaviours. Odorant receptors (ORs) in insects have been identified, particularly in the holometabolous model Drosophila, and some of them have been functionally studied. However, ORs in the locust-a hemimetabolous model insect and the most important insect crop pest-have not yet been identified, hindering our understanding of locust olfaction. Here, we report for the first time four putative ORs in Locusta migratoria: LmigOR1, LmigOR2, LmigOR3 and LmigOR4. RESULTS: These four putative OR genes encoded proteins with amino acids of 478, 436, 413 and 403 respectively. Sequence identity among them ranged from 19.7% to 35.4%. All ORs were tissue-specifically expressed in olfactory organs, without sex-biased characteristics. However, LmigOR1, LmigOR3 and LmigOR4 were only expressed in the antenna, while LmigOR2 could also be detected in mouthparts. In situ hybridization demonstrated that the LmigOR1antisense probe labelled olfactory receptor neurons (ORNs) in almost all segments of the antenna, but only a few segments housed ORNs expressing LmigOR2. The number of neurons labelled by LmigOR1 antisense probes in each antennal segment was much greater (>10 neurons/segment) than that labelled by LmigOR2 probes (generally 1-3 neurons/segment). Furthermore, some of the labelled neurons could be attributed to the basiconic sensilla, but LmigOR1 and LmigOR2 were expressed in different subtypes. CONCLUSIONS: Our results strongly suggested that these newly discovered genes encode locust ORs and the differential expression patterns of LmigOR1 and LmigOR2 implied distinct functions. These results may offer insights into locust olfaction and contribute to the understanding of the evolution of insect chemoreception.
Assuntos
Antenas de Artrópodes/metabolismo , Gafanhotos/metabolismo , Receptores Odorantes/genética , Receptores Odorantes/metabolismo , Animais , Antenas de Artrópodes/citologia , Gafanhotos/genética , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo , Neurônios Receptores Olfatórios/metabolismo , Filogenia , RNA Mensageiro/metabolismo , Receptores Odorantes/classificação , Sensilas , Alinhamento de Sequência , Olfato/genéticaRESUMO
Olfaction is crucial in many insects for critical behaviors, including those regulating survival and reproduction. Insect odorant-binding proteins (OBPs) function in the first step of the olfactory system and play an essential role in the perception of odorants, such as pheromones and host chemicals. The oriental fruit fly, Bactrocera dorsalis, is a destructive fruit-eating pest, due to its wide host range of up to 250 different types of fruits and vegetables, and this fly causes severe economic damage to the fruit and vegetable industry. However, OBP genes have not been largely identified in B. dorsalis. Based on our previously constructed B. dorsalis cDNA library, ten OBP genes were identified in B. dorsalis for the first time. A phylogenetic tree was generated to show the relationships among the 10 OBPs of B. dorsalis to OBP sequences of two other Dipteran species, including Drosophila melanogaster and the mosquito Anopheles gambiae. The expression profiles of the ten OBPs in different tissues (heads, thoraxes, abdomens, legs, wings, male antennae and female antenna) of the mated adults were analyzed by real-time PCR. The results showed that nine of them are highly expressed in the antenna of both sexes, except BdorOBP7. Four OBPs (BdorOBP1, BdorOBP4, BdorOBP8, and BdorOBP10) are also enriched in the abdomen, and BdorOBP7 is specifically expressed in leg, indicating that it may function in other biological processes. This work will provide insight into the roles of OBPs in chemoreception and help develop new pest-control strategies.
Assuntos
Receptores Odorantes/metabolismo , Tephritidae/metabolismo , Sequência de Aminoácidos , Animais , Anopheles/metabolismo , Drosophila melanogaster/metabolismo , Feminino , Masculino , Dados de Sequência Molecular , Filogenia , Receptores Odorantes/classificação , Receptores Odorantes/genética , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Distribuição Tecidual , TranscriptomaRESUMO
BACKGROUND: Insects detect environmental chemicals via a large and rapidly evolving family of chemosensory receptor proteins. Although our understanding of the molecular genetic basis for Drosophila chemoreception has increased enormously in the last decade, similar understanding in other insects remains limited. The tobacco hornworm, Manduca sexta, has long been an important model for insect chemosensation, particularly from ecological, behavioral, and physiological standpoints. It is also a major agricultural pest on solanaceous crops. However, little sequence information and lack of genetic tools has prevented molecular genetic analysis in this species. The ability to connect molecular genetic mechanisms, including potential lineage-specific changes in chemosensory genes, to ecologically relevant behaviors and specializations in M. sexta would be greatly beneficial. RESULTS: Here, we sequenced transcriptomes from adult and larval chemosensory tissues and identified chemosensory genes based on sequence homology. We also used dsRNA feeding as a method to induce RNA interference in larval chemosensory tissues. CONCLUSIONS: We report identification of new chemosensory receptor genes including 17 novel odorant receptors and one novel gustatory receptor. Further, we demonstrate that systemic RNA interference can be used in larval olfactory neurons to reduce expression of chemosensory receptor transcripts. Together, our results further the development of M. sexta as a model for functional analysis of insect chemosensation.
Assuntos
Manduca/genética , Interferência de RNA , Receptores Odorantes/antagonistas & inibidores , Animais , Mapeamento de Sequências Contíguas , Biblioteca Gênica , Técnicas de Transferência de Genes , Larva/genética , Larva/metabolismo , Manduca/classificação , Manduca/crescimento & desenvolvimento , Filogenia , RNA de Cadeia Dupla/metabolismo , Receptores Odorantes/classificação , Receptores Odorantes/metabolismo , Transcriptoma/genéticaRESUMO
The odor response properties of a mammalian olfactory sensory neuron (OSN) are determined by the tightly regulated expression of a single member of a very large family of odorant receptors (ORs). The OR also plays an important role in focusing the central projections of all OSNs expressing that particular receptor to a pair of stereotypic locations (glomeruli) in each olfactory bulb (OB), thus creating a spatial map of odor responses in the brain. Here we show that when initiated late in neural development, transgenic expression of one OR in almost all OSNs has little influence on the architecture of the OB in mice. In contrast, early OR-transgene expression (mediated by the Ggamma8-promoter) in 50-70% of OSNs grossly distorts the morphology of glomeruli and alters the projection patterns of many residual OSNs not expressing the transgene. Interestingly, this disruption of targeting persists in adult animals despite the downregulation of Ggamma8 and transgenic OR expression that occurs as olfactory neurogenesis declines. Indeed, functional imaging studies reveal a dramatic decrease in the complexity of responses to odorants in adult Ggamma8-transgenic OR mice. Thus, we show that initiation of transgenic OR expression early in the development of OSNs, rather than just the extent of transgene expression, determines its effectiveness at modifying OB anatomy and function. Together, these data imply that OR-expression timing needs to be very tightly controlled to achieve the precise wiring and function of the mammalian olfactory system.
Assuntos
Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Rede Nervosa/metabolismo , Condutos Olfatórios/metabolismo , Receptores Odorantes/metabolismo , Animais , Animais Recém-Nascidos , Embrião de Mamíferos , Subunidades gama da Proteína de Ligação ao GTP/genética , Subunidades gama da Proteína de Ligação ao GTP/metabolismo , Regulação da Expressão Gênica no Desenvolvimento/genética , Proteínas de Fluorescência Verde/genética , Camundongos , Camundongos Transgênicos , Rede Nervosa/embriologia , Rede Nervosa/crescimento & desenvolvimento , Odorantes , Proteína de Marcador Olfatório/genética , Proteína de Marcador Olfatório/metabolismo , Condutos Olfatórios/anatomia & histologia , Condutos Olfatórios/embriologia , Condutos Olfatórios/crescimento & desenvolvimento , Receptores Odorantes/classificação , Receptores Odorantes/genética , beta-Galactosidase/metabolismoRESUMO
Two high-quality cDNA libraries were constructed from female and male antennae of the cotton bollworm Helicoverpa armigera (Hübner). The titers were approximately 2.0 × 106 pfu/ml for females and 2.3 × 106 pfu/ml for males, and this complies with the test requirement. From the libraries, 1750 male ESTs and 1640 female ESTs were sequenced and further analyzed. We identified 15 olfactory genes (12 are new), and 14 of them have the characteristic six conserved cysteine residues. With the exception of OBP9, all the genes were classified as classical OBP genes. By alignment and cluster analysis, the 14 classical OBPs were divided into pheromone binding protein (PBP) genes, odorant binding protein (OBP) genes, general odorant binding protein 1 (GOBP1) genes, general odorant binding protein 2 (GOBP2) genes and antennae binding protein (ABP) genes. Among these genes, we obtained three PBP genes (PBP1-PBP3) including two new PBP genes, one new ABP gene, nine new OBP genes (OBP1-OBP9), one known GOBP1 gene and one known GOBP2 gene. Furthermore, the expression patterns of these 14 classical OBP genes were investigated in various tissues by real-time quantitative polymerase chain reaction (qPCR). The results indicated that some OBP genes are expressed differently in different sexes and tissues, but most of them are highly expressed in antennae.
Assuntos
Expressão Gênica , Biblioteca Gênica , Lepidópteros/genética , Receptores Odorantes/genética , Sequência de Aminoácidos , Animais , Clonagem Molecular , Etiquetas de Sequências Expressas , Feminino , Masculino , Dados de Sequência Molecular , Filogenia , Receptores Odorantes/classificaçãoRESUMO
In the mouse, 129 functional class I odorant receptor (OR) genes reside in a ~ 3 megabase huge gene cluster on chromosome 7. The J element, a long-range cis-regulatory element governs the singular expression of class I OR genes by exerting its effect over the whole cluster. To elucidate the molecular mechanisms underlying class I-specific enhancer activity of the J element, we analyzed the J element sequence to determine the functional region and essential motif. The 430-bp core J element, that is highly conserved in mammalian species from the platypus to humans, contains a class I-specific conserved motif of AAACTTTTC, multiple homeodomain sites, and a neighboring O/E-like site, as in class II OR-enhancers. A series of transgenic reporter assays demonstrated that the class I-specific motif is not essential, but the 330-bp core J-H/O containing the homeodomain and O/E-like sites is necessary and sufficient for class I-specific enhancer activity. Further motif analysis revealed that one of homeodomain sequence is the Greek Islands composite motif of the adjacent homeodomain and O/E-like sequences, and mutations in the composite motif abolished or severely reduced class I-enhancer activity. Our results demonstrate that class I and class II enhancers share a functional motif for their enhancer activity.
Assuntos
Motivos de Aminoácidos/genética , Elementos Facilitadores Genéticos/genética , Receptores Odorantes/genética , Animais , Cromossomos Humanos Par 7/genética , Expressão Gênica/genética , Proteínas de Homeodomínio/genética , Humanos , Camundongos , Mutação , Mucosa Olfatória/metabolismo , Mucosa Olfatória/fisiologia , Receptores Odorantes/classificaçãoRESUMO
Inquiline ants are highly specialized and obligate social parasites that infiltrate and exploit colonies of closely related species. They have evolved many times convergently, are often evolutionarily young lineages, and are almost invariably rare. Focusing on the leaf-cutting ant genus Acromyrmex, we compared genomes of three inquiline social parasites with their free-living, closely-related hosts. The social parasite genomes show distinct signatures of erosion compared to the host lineages, as a consequence of relaxed selective constraints on traits associated with cooperative ant colony life and of inquilines having very small effective population sizes. We find parallel gene losses, particularly in olfactory receptors, consistent with inquiline species having highly reduced social behavioral repertoires. Many of the genomic changes that we uncover resemble those observed in the genomes of obligate non-social parasites and intracellular endosymbionts that branched off into highly specialized, host-dependent niches.