RESUMO
Nonclonal innate immune responses mediated by germ line-encoded receptors, such as Toll-like receptors or natural killer receptors, are commonly contrasted with diverse, clonotypic adaptive responses of lymphocyte antigen receptors generated by somatic recombination. However, the Variable (V) regions of antigen receptors include germ line-encoded motifs unaltered by somatic recombination, and theoretically available to mediate nonclonal, innate responses, that are independent of or largely override clonotypic responses. Recent evidence demonstrates that such responses exist, underpinning the associations of particular γδ T cell receptors (TCRs) with specific anatomical sites. Thus, TCRγδ can make innate and adaptive responses with distinct functional outcomes. Given that αß T cells and B cells can also make nonclonal responses, we consider that innate responses of antigen receptor V-regions may be more widespread, for example, inducing states of preparedness from which adaptive clones are better selected. We likewise consider that potent, nonclonal T cell responses to microbial superantigens may reflect subversion of physiologic innate responses of TCRα/ß chains.
Assuntos
Imunidade Adaptativa , Imunidade Inata , Receptores de Antígenos/metabolismo , Animais , Interações Hospedeiro-Patógeno/imunologia , Humanos , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Receptores de Antígenos/química , Receptores de Antígenos/genética , Receptores de Antígenos de Linfócitos T/química , Receptores de Antígenos de Linfócitos T/metabolismo , Transdução de SinaisRESUMO
The nuclear factor kappa B (NF-κB) family of transcription factors orchestrates signal-induced gene expression in diverse cell types. Cellular responses to NF-κB activation are regulated at the level of cell and signal specificity, as well as differential use of family members (subunit specificity). Here we used time-dependent multi-omics to investigate the selective functions of Rel and RelA, two closely related NF-κB proteins, in primary B lymphocytes activated via the B cell receptor. Despite large numbers of shared binding sites genome wide, Rel and RelA directed kinetically distinct cascades of gene expression in activated B cells. Single-cell RNA sequencing revealed marked heterogeneity of Rel- and RelA-specific responses, and sequential binding of these factors was not a major mechanism of protracted transcription. Moreover, nuclear co-expression of Rel and RelA led to functional antagonism between the factors. By rigorously identifying the target genes of each NF-κB subunit, these studies provide insights into exclusive functions of Rel and RelA in immunity and cancer.
Assuntos
NF-kappa B , Fator de Transcrição RelA , NF-kappa B/metabolismo , Fator de Transcrição RelA/genética , Fator de Transcrição RelA/metabolismo , Linfócitos B/metabolismo , Sítios de Ligação , Receptores de Antígenos/metabolismoRESUMO
During an organism's ontogeny and in the adult, each B and T lymphocyte generates a unique antigen receptor, thereby creating the organism's ability to respond to a vast number of different antigens. The antigen receptor loci are organized into distinct regions that contain multiple variable (V), diversity (D), and/or joining (J) and constant (C) coding elements that are scattered across large genomic regions. In this review, we discuss the epigenetic modifications that take place in the different antigen receptor loci, the chromatin structure adopted by the antigen receptor loci to allow recombination of elements separated by large genomic distances, and the relationship between epigenetics and chromatin structure and how they relate to the generation of antigen receptor diversity.
Assuntos
Cromatina/química , Receptores de Antígenos/metabolismo , Animais , Epigênese Genética , Loci Gênicos , Variação Genética/imunologia , Humanos , Receptores de Antígenos/química , Receptores de Antígenos/genética , Transcrição Gênica , Recombinação V(D)JRESUMO
Lymphocytes are essential in innate and adaptive immunity. Recent insights suggest that some innate lymphocytes execute functions with adaptive characteristics, while adaptive lymphocytes can operate in ways reminiscent of innate cells. Rather than partitioning lymphocytes according to the type of effector function they execute, we propose that a relevant discrimination relates to the existence of conventional T cells in a naive state. The naive state can be seen as an actively repressed condition that supports T cell diversity and enables the flexible differentiation of effector cells in a manner that best addresses the antigenic challenge. We discuss these considerations in the context of the relative roles of innate lymphoid cells and antigen-experienced T cells in the immune system.
Assuntos
Imunidade Adaptativa/imunologia , Imunidade Inata/imunologia , Linfócitos/imunologia , Receptores de Antígenos/imunologia , Animais , Diferenciação Celular/imunologia , Células Clonais/imunologia , Células Clonais/metabolismo , Citocinas/imunologia , Citocinas/metabolismo , Humanos , Linfócitos/citologia , Linfócitos/metabolismo , Modelos Imunológicos , Receptores de Antígenos/metabolismoRESUMO
Sensitive detection of cancer biomarkers can contribute to the timely diagnosis and treatment of diseases. In this study, the whitespotted bamboo sharks were immunized with human α-fetoprotein (AFP), and a phage-displayed variable new antigen receptor (VNAR) single domain antibody library was constructed. Then four unique VNARs (VNAR1, VNAR11, VNAR21, and VNAR25) against AFP were isolated from the library by biopanning for the first time. All of the sequences belong to type II of VNAR, and the VNAR11 was much different from the rest of the three sequences. Then VNAR1 and VNAR11 were selected to fuse with the C4-binding protein α chain (C4bpα) sequence and efficiently expressed in the Escherichia coli system. Furthermore, a VNAR-C4bpα-mediated sandwich chemiluminescence immunoassay (VSCLIA) was developed for the detection of AFP in human serum samples. After optimization, the VSCLIA showed a limit of detection of 0.74 ng/mL with good selectivity and accuracy. Moreover, the results of clinical serum samples detected by the VSCLIA were confirmed by an automatic immunoanalyzer in the hospital, indicating its practical application in actual samples. In conclusion, the novel antibody element VNAR exhibits great potential for immunodiagnosis, and this study also provides a new direction and experimental basis for AFP detection.
Assuntos
Tubarões , Anticorpos de Domínio Único , Animais , Humanos , alfa-Fetoproteínas , Tubarões/metabolismo , Anticorpos , Soro/metabolismo , Receptores de Antígenos/química , Receptores de Antígenos/metabolismo , AntígenosRESUMO
Single-domain antibodies, including variable domains of the heavy chains of heavy chain-only antibodies (VHHs) from camelids and variable domains of immunoglobulin new antigen receptors (VNARs) from cartilaginous fish, show the therapeutic potential of targeting antigens in a cytosol reducing environment. A large proportion of single-domain antibodies contain non-canonical cysteines and corresponding non-canonical disulfide bonds situated on the protein surface, rendering them vulnerable to environmental factors. Research on non-canonical disulfide bonds has been limited, with a focus solely on VHHs and utilizing only cysteine mutations rather than the reducing agent treatment. In this study, we examined an anti-lysozyme VNAR and an anti-BC2-tag VHH, including their non-canonical disulfide bond reduced counterparts and non-canonical cysteine mutants. Both the affinity and stability of the VNARs and VHHs decreased in the non-canonical cysteine mutants, whereas the reduced-state samples exhibited decreased thermal stability, with their affinity remaining almost unchanged regardless of the presence of reducing agents. Molecular dynamics simulations suggested that the decrease in affinity of the mutants resulted from increased flexibility of the CDRs, the disappearance of non-canonical cysteine-antigen interactions, and the perturbation of other antigen-interacting residues caused by mutations. These findings highlight the significance of non-canonical cysteines for the affinity of single-domain antibodies and demonstrate that the mutation of non-canonical cysteines is not equivalent to the disruption of non-canonical disulfide bonds with a reducing agent when assessing the function of non-canonical disulfide bonds.
Assuntos
Cisteína , Dissulfetos , Simulação de Dinâmica Molecular , Anticorpos de Domínio Único , Cisteína/química , Cisteína/metabolismo , Dissulfetos/química , Animais , Anticorpos de Domínio Único/química , Anticorpos de Domínio Único/imunologia , Anticorpos de Domínio Único/metabolismo , Estabilidade Proteica , Receptores de Antígenos/química , Receptores de Antígenos/metabolismo , Receptores de Antígenos/genética , Receptores de Antígenos/imunologia , Afinidade de Anticorpos , Cadeias Pesadas de Imunoglobulinas/química , Cadeias Pesadas de Imunoglobulinas/genética , Cadeias Pesadas de Imunoglobulinas/metabolismo , Muramidase/química , Muramidase/metabolismo , Muramidase/imunologia , Região Variável de Imunoglobulina/química , Região Variável de Imunoglobulina/genética , MutaçãoRESUMO
Chromosomal translocations that juxtapose antigen receptor genes and oncogenes are frequently associated with lymphoid malignancies. In this issue, Robbiani et al. (2008) show that activation-induced deaminase (AID), an enzyme involved in antigen receptor gene diversification, generates DNA double-strand breaks (DSBs) in oncogenes, and Tsai et al. (2008) propose that AID and the recombinase-activating gene (RAG) endonuclease may collaborate to generate off-target DSBs.
Assuntos
Citidina Desaminase/metabolismo , Quebras de DNA de Cadeia Dupla , Receptores de Antígenos/genética , Animais , Reparo do DNA , Proteínas de Homeodomínio/metabolismo , Humanos , Linfoma/genética , Linfoma/metabolismo , Receptores de Antígenos/metabolismo , Translocação GenéticaRESUMO
T-cell recognition of antigens is complex, leading to biochemical and cellular events that impart both specific and targeted immune responses. The end result is an array of cytokines that facilitate the direction and intensity of the immune reaction-such as T-cell proliferation, differentiation, macrophage activation, and B-cell isotype switching-all of which may be necessary and appropriate to eliminate the antigen and induce adaptive immunity. Using in silico docking to identify small molecules that putatively bind to the T-cell Cß-FG loop, we have shown in vitro using an antigen presentation assay that T-cell signalling is altered. The idea of modulating T-cell signalling independently of antigens by directly targeting the FG loop is novel and warrants further study.
Assuntos
Transdução de Sinais , Linfócitos T , Receptores de Antígenos de Linfócitos T alfa-beta , Receptores de Antígenos/metabolismo , Citocinas/metabolismo , Receptores de Antígenos de Linfócitos T/metabolismoRESUMO
Transfer across the blood-brain barrier (BBB) remains a significant hurdle for the development of biopharmaceuticals with therapeutic effects within the central nervous system. We established a functional selection method to identify high affinity single domain antibodies to the transferrin receptor 1 (TfR1) with efficient biotherapeutic delivery across the BBB. A synthetic phage display library based on the variable domain of new antigen receptor (VNAR) was used for in vitro selection against recombinant human TfR1 ectodomain (rh-TfR1-ECD) followed by in vivo selection in mouse for brain parenchyma penetrating antibodies. TXB2 VNAR was identified as a high affinity, species cross-reactive VNAR antibody against TfR1-ECD that does not compete with transferrin or ferritin for receptor binding. IV dosing of TXB2 when fused to human Fc domain (TXB2-hFc) at 25 nmol/kg (1.875 mg/kg) in mice resulted in rapid binding to brain capillaries with subsequent transport into the brain parenchyma and specific uptake into TfR1-positive neurons. Likewise, IV dosing of TXB2-hFc fused with neurotensin (TXB2-hFc-NT) at 25 nmol/kg resulted in a rapid and reversible pharmacological response as measured by body temperature reduction. TXB2-hFc did not elicit any acute adverse reactions, bind, or deplete circulating reticulocytes or reduce BBB-expressed endogenous TfR1 in mice. There was no evidence of target-mediated clearance or accumulation in peripheral organs except lung. In conclusion, TXB2 is a high affinity, species cross-reactive, and brain-selective VNAR antibody to TfR1 that rapidly crosses the BBB and exhibits a favorable pharmacokinetic and safety profile and can be readily adapted to carry a wide variety of biotherapeutics from blood to brain.
Assuntos
Afinidade de Anticorpos , Antígenos CD/imunologia , Transporte Biológico/imunologia , Barreira Hematoencefálica/imunologia , Barreira Hematoencefálica/metabolismo , Receptores da Transferrina/imunologia , Anticorpos de Cadeia Única/imunologia , Animais , Antígenos CD/genética , Antígenos CD/metabolismo , Bacteriófagos/imunologia , Transporte Biológico/genética , Reações Cruzadas , Feminino , Células HEK293 , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Receptores de Antígenos/imunologia , Receptores de Antígenos/metabolismo , Receptores da Transferrina/genética , Receptores da Transferrina/metabolismo , Proteínas Recombinantes/imunologia , Proteínas Recombinantes/metabolismo , Anticorpos de Cadeia Única/farmacocinética , TransfecçãoRESUMO
The variable lymphocyte receptor (VLR) mediates the humoral immune response in jawless vertebrates, including lamprey (Petromyzon marinus) and hagfish (Eptatretus burgeri). Hagfish VLRBs are composed of leucine-rich repeat (LRR) modules, conjugated with a superhydrophobic C-terminal tail, which contributes to low levels of expression in recombinant protein technology. In this study, we screened Ag-specific VLRBs from hagfish immunized with nervous necrosis virus (NNV). The artificially multimerized form of VLRB was constructed using a mammalian expression system. To enhance the level of expression of the Ag-specific VLRB, mutagenesis of the VLRB was achieved in vitro through domain swapping of the LRR C-terminal cap and variable LRR module. The mutant VLRB obtained, with high expression and secretion levels, was able to specifically recognize purified and progeny NNV, and the Ag binding ability of this mutant was increased by at least 250-fold to that of the nonmutant VLRB. Furthermore, preincubation of the Ag-specific VLRB with NNV reduced the infectivity of NNV in E11 cells in vitro, and in vivo experiment. Our results suggest that the newly developed Ag-specific VLRB has the potential to be used as diagnostic and therapeutic reagents for NNV infections in fish.
Assuntos
Doenças dos Peixes/imunologia , Feiticeiras (Peixe)/imunologia , Linfócitos/imunologia , Nodaviridae/fisiologia , Infecções por Vírus de RNA/imunologia , Animais , Anticorpos Neutralizantes/metabolismo , Anticorpos Antivirais/metabolismo , Linhagem Celular , Proteínas de Peixes/genética , Proteínas de Peixes/metabolismo , Imunização , Lampreias , Mutação/genética , Petromyzon , Receptores de Antígenos/genética , Receptores de Antígenos/metabolismoRESUMO
The past decade has increased our understanding of how genome topology controls RAG endonuclease-mediated assembly of lymphocyte AgR genes. New technologies have illuminated how the large IgH, Igκ, TCRα/δ, and TCRß loci fold into compact structures that place their numerous V gene segments in similar three-dimensional proximity to their distal recombination center composed of RAG-bound (D)J gene segments. Many studies have shown that CTCF and cohesin protein-mediated chromosome looping have fundamental roles in lymphocyte lineage- and developmental stage-specific locus compaction as well as broad usage of V segments. CTCF/cohesin-dependent loops have also been shown to direct and restrict RAG activity within chromosome domains. We summarize recent work in elucidating molecular mechanisms that govern three-dimensional chromosome organization and in investigating how these dynamic mechanisms control V(D)J recombination. We also introduce remaining questions for how CTCF/cohesin-dependent and -independent genome architectural mechanisms might regulate compaction and recombination of AgR loci.
Assuntos
Linfócitos B/imunologia , Receptores de Antígenos/genética , Linfócitos T/imunologia , Recombinação V(D)J/genética , Animais , Fator de Ligação a CCCTC/metabolismo , Proteínas de Ciclo Celular/metabolismo , Montagem e Desmontagem da Cromatina , Proteínas Cromossômicas não Histona/metabolismo , Estruturas Cromossômicas , Loci Gênicos , Humanos , Conformação Molecular , Receptores de Antígenos/metabolismo , CoesinasRESUMO
Since the 1990s it has been known that B and T lymphocytes exhibit low-level, constitutive signaling in the basal state (tonic signaling). These lymphocytes display a range of affinity for self, which in turn generates a range of tonic signaling. Surprisingly, what signaling pathways are active in the basal state and the functional relevance of the observed tonic signaling heterogeneity remain open questions today. Here we summarize what is known about the mechanistic and functional details of tonic signaling. We highlight recent advances that have increased our understanding of how the amount of tonic signal impacts immune function, describing novel tools that have moved the field forward and toward a molecular understanding of tonic signaling.
Assuntos
Linfócitos B/imunologia , Receptores de Antígenos/metabolismo , Linfócitos T/imunologia , Animais , Diferenciação Celular , Microambiente Celular , Humanos , Tolerância Imunológica , Imunidade Celular , Ativação LinfocitáriaRESUMO
Variable lymphocyte receptors (VLRs) play an important role via their antigen-special reorganization in jawless vertebrates (agnathans) adaptive immune response. In the present study, the open reading frame (ORF) of Eriocheir sinensis VLRA (designated as EsVLRA) was identified. EsVLRA comprised a 799-amino-acid polypeptide with one LRR_NT domain, thirteen LRR domains and one LRR_CT domain, which showed a high domain consistency of the VLR genes in lamprey (Petromyzon marinus). The transcript of EsVLRA was detected in all examined tissues with the highest level detected in hepatopancreas. Notably, the expression of EsVLRA in hepatopancreas, gonads, gill and intestine of male crabs was significantly higher than that in females. The recombinant EsVLRA exhibited strong bacteria-binding activity rather than antibacterial activity, suggesting its crucial role in immune recognition. Furthermore, 6 h earlier response and a significantly higher peak of EsVLRA mRNA expression was observed after challenge with live Vibrio parahaemolyticus (240.6-fold, P < 0.01, crabs receive secondary challenge after V. parahaemolyticus vaccine to the carbs only receive twice PBS injection, N = 6), compared with those only received first injection with formalin-inactivated V. parahaemolyticus (39.7-fold, P < 0.01, challenge 6 h to vaccination 12 h). The findings of this study together demonstrated that EsVLRA plays an important role in the immune system of E. sinensis, serving as a pattern recognition receptor and involving in the immune priming.
Assuntos
Proteínas de Artrópodes/imunologia , Vacinas Bacterianas/imunologia , Braquiúros/imunologia , Receptores de Antígenos/imunologia , Vibrio parahaemolyticus/imunologia , Imunidade Adaptativa , Sequência de Aminoácidos , Animais , Proteínas de Artrópodes/química , Proteínas de Artrópodes/genética , Proteínas de Artrópodes/metabolismo , Sequência de Bases , Braquiúros/microbiologia , Clonagem Molecular , Feminino , Hemócitos/imunologia , Hemócitos/metabolismo , Imunização Secundária , Masculino , Modelos Moleculares , Filogenia , Receptores de Antígenos/química , Receptores de Antígenos/genética , Receptores de Antígenos/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/imunologia , Proteínas Recombinantes/metabolismo , Alinhamento de Sequência , Distribuição TecidualRESUMO
Neutrophils play a critical role in antimicrobial host defense, but their improper activation also contributes to inflammation-induced tissue damage. Therefore, understanding neutrophil biology is important for the understanding, diagnosis, and therapy of both infectious and inflammatory diseases. Neutrophils express a large number of cell-surface receptors that sense extracellular cues and trigger various functional responses through complex intracellular signaling pathways. During the last several years, we and others have shown that tyrosine kinases play a critical role in those processes. In particular, Src-family and Syk tyrosine kinases couple Fc-receptors and adhesion receptors (integrins and selectins) to various neutrophil effector functions. This pathway shows surprising similarity to lymphocyte antigen receptor signaling and involves various other enzymes (e.g. PLCγ2), exchange factors (e.g. Vav-family members) and adapter proteins (such as ITAM-containing adapters, SLP-76, and CARD9). Those mediators trigger various antimicrobial functions and play a critical role in coordinating the inflammatory response through the release of inflammatory mediators, such as chemokines and LTB4 . Interestingly, however, tyrosine kinases have a limited direct role in the migration of neutrophils to the site of inflammation. Here, we review the role of tyrosine kinase signaling pathways in neutrophils and how those pathways contribute to neutrophil activation in health and disease.
Assuntos
Neutrófilos/imunologia , Proteínas Tirosina Quinases/metabolismo , Transdução de Sinais , Animais , Quimiocinas/metabolismo , Humanos , Imunidade Inata , Integrinas/metabolismo , Ativação de Neutrófilo , Receptores de Antígenos/metabolismo , Receptores Fc/metabolismo , Selectinas/metabolismoRESUMO
The histone methyltransferase EZH2 is required for B and T cell development; however, the molecular mechanisms underlying this requirement remain elusive. In a murine model of lymphoid-specific EZH2 deficiency we found that EZH2 was required for proper development of adaptive, but not innate, lymphoid cells. In adaptive lymphoid cells EZH2 prevented the premature expression of Cdkn2a and the consequent stabilization of p53, an effector of the pre-Ag receptor checkpoints. Deletion of Cdkn2a in EZH2-deficient lymphocytes prevented p53 stabilization, extended lymphocyte survival, and restored differentiation resulting in the generation of mature B and T lymphocytes. Our results uncover a crucial role for EZH2 in adaptive lymphocytes to control the developmental timing of effectors of the pre-Ag receptor checkpoints.
Assuntos
Proteína Potenciadora do Homólogo 2 de Zeste/metabolismo , Receptores de Antígenos/metabolismo , Linfócitos T/imunologia , Linfócitos T/metabolismo , Imunidade Adaptativa , Animais , Linfócitos B/imunologia , Inibidor p16 de Quinase Dependente de Ciclina/deficiência , Inibidor p16 de Quinase Dependente de Ciclina/genética , Inibidor p16 de Quinase Dependente de Ciclina/metabolismo , Proteína Potenciadora do Homólogo 2 de Zeste/deficiência , Proteína Potenciadora do Homólogo 2 de Zeste/genética , Regulação da Expressão Gênica , Genes p53 , Células Matadoras Naturais/imunologia , Linfopoese , Camundongos , Receptores de Antígenos/genética , Receptores de Antígenos/imunologiaRESUMO
Chimeric antigen receptors (CARs) have recently been approved for the treatment of hematological malignancies, but our lack of understanding of the basic mechanisms that activate these proteins has made it difficult to optimize and control CAR-based therapies. In this study, we use phosphoproteomic mass spectrometry and mechanistic computational modeling to quantify the in vitro kinetics of individual tyrosine phosphorylation on a variety of CARs. We show that each of the 10 tyrosine sites on the CD28-CD3ζ CAR is phosphorylated by lymphocyte-specific protein-tyrosine kinase (LCK) with distinct kinetics. The addition of CD28 at the N-terminal of CD3ζ increases the overall rate of CD3ζ phosphorylation. Our computational model identifies that LCK phosphorylates CD3ζ through a mechanism of competitive inhibition. This model agrees with previously published data in the literature and predicts that phosphatases in this system interact with CD3ζ through a similar mechanism of competitive inhibition. This quantitative modeling framework can be used to better understand CAR signaling and T cell activation.
Assuntos
Simulação por Computador , Receptores de Antígenos/metabolismo , Proteínas Recombinantes de Fusão/metabolismo , Sequência de Aminoácidos , Sítios de Ligação , Antígenos CD28/química , Antígenos CD28/metabolismo , Cinética , Proteína Tirosina Quinase p56(lck) Linfócito-Específica/metabolismo , Mutação , Fosforilação , Proteômica , Receptores de Antígenos/química , Receptores de Antígenos/genética , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/genética , Especificidade por Substrato , Tirosina/metabolismoRESUMO
Protein therapeutics, monoclonal antibodies (mAbs) in particular, are large, structurally complex molecules that are prone to numerous modes of degradation during their production and long-term storage. Physical degradation via protein aggregation is a major concern when developing protein therapeutic candidates for clinical use. A dimer is perhaps the simplest element of protein aggregation, and thus, a better understanding of protein dimers in terms of their structures, intermolecular interactions, and chemical nature will help in the development of rational strategies for reducing aggregation propensity. In this study, two different mAb dimers were generated from an IgG2 monoclonal antibody solution, i.e., a native dimer generated under long-term storage and a thermal dimer from a thermal stress condition. Both IgG2 dimers were characterized in terms of their chemical and physical properties, bioactivity, and conformational dynamics. The native IgG2 dimer was formed mainly through noncovalent association. It displayed minimal differences in biophysical properties and higher-order structure compared to the monomer yet showed compromised in vitro potency, likely because of steric hindrance. In contrast, the thermal IgG2 dimer was mainly disulfide-linked, but even so, no new non-native disulfide bonds were detected by peptide mapping. Two regions within the Fc-CH2 domain of the thermal IgG2 dimer exhibited significantly increased flexibility as measured by hydrogen-deuterium exchange mass spectrometry, and notably, these regions are connected by an intrachain disulfide bond under natively folded conditions. These findings provide a better understanding of dimer formation under long-term storage and thermal stress conditions for this IgG2 mAb, and possible aggregation mechanisms are discussed.
Assuntos
Anticorpos Monoclonais/química , Anticorpos Monoclonais/metabolismo , Imunoglobulina G/imunologia , Leucemia Eritroblástica Aguda/metabolismo , Multimerização Proteica , Receptores de Antígenos/metabolismo , Anticorpos Monoclonais/imunologia , Humanos , Leucemia Eritroblástica Aguda/patologia , Conformação Proteica , Proteólise , Células Tumorais CultivadasRESUMO
Non-melanoma skin cancer (NMSC) is the most commonly diagnosed cancer in the United States. Ultraviolet-B (UVB) irradiation is the primary carcinogen responsible for stimulating NMSC development. Ornithine Decarboxylase (ODC), the first rate-limiting enzyme in the synthesis of polyamines, is upregulated in response to a variety of proliferation stimuli, including UVB exposure. Our previous studies have demonstrated regulation of ODC synthesis by the mammalian target of rapamycin complex 1 (mTORC1) in cells transformed by oncogenic Ras. The goal of these studies was to better understand the link between mTORC1 and ODC in nontransformed cells treated with UVB. We show that the ablation of mTORC1 activity by conditional knockout of its essential component Raptor led to decreased levels of ODC protein both before and after exposure to 10â¯mJ/cm2 UVB. Moreover, ODC mRNA was destabilized in the absence of Raptor, suggesting post-transcriptional regulation. We have previously shown that the ODC transcript is stabilized by the RNA binding protein (RBP) human antigen R (HuR), and the intracellular localization of HuR responds to changes in mTORC1 activity. To expand these studies, we investigated whether HuR functions to regulate ODC mRNA stability after UVB exposure. Our results show an increased localization of HuR to the cytoplasm after UVB exposure in wild-type cells compared to Raptor knockout cells, and this is accompanied by greater association of HuR with the ODC transcript. These data suggest that the localization of HuR in response to UVB is influenced, at least in part, by mTORC1 and that HuR can bind to and stabilize ODC mRNA after UVB exposure in an mTORC1-dependent manner.
Assuntos
Fibroblastos/metabolismo , Ornitina Descarboxilase/metabolismo , RNA Mensageiro/metabolismo , Receptores de Antígenos/metabolismo , Raios Ultravioleta , Animais , Sítios de Ligação , Células Cultivadas , Humanos , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Camundongos , Ornitina Descarboxilase/genética , RNA Mensageiro/genética , Receptores de Antígenos/genética , Transcrição Gênica/genéticaRESUMO
Therapeutic mAbs have delivered several blockbuster drugs in oncology and autoimmune inflammatory disease. Revenue for mAbs continues to rise, even in the face of competition from a growing portfolio of biosimilars. Despite this success, there are still limitations associated with the use of mAbs as therapeutic molecules. With a molecular mass of 150â kDa, a two-chain structure and complex glycosylation these challenges include a high cost of goods, limited delivery options, and poor solid tumour penetration. There remains an urgency to create alternatives to antibody scaffolds in a bid to circumvent these limitations, while maintaining or improving the therapeutic success of conventional mAb formats. Smaller, less complex binders, with increased domain valency, multi-specific/paratopic targeting, tuneable serum half-life and low inherent immunogenicity are a few of the characteristics being explored by the next generation of biologic molecules. One novel 'antibody-like' binder that has naturally evolved over 450 million years is the variable new antigen receptor (VNAR) identified as a key component of the adaptive immune system of sharks. At only 11â kDa, these single-domain structures are the smallest IgG-like proteins in the animal kingdom and provide an excellent platform for molecular engineering and biologics drug discovery. VNAR attributes include high affinity for target, ease of expression, stability, solubility, multi-specificity, and increased potential for solid tissue penetration. This review article documents the recent drug developmental milestones achieved for therapeutic VNARs and highlights the first reported evidence of the efficacy of these domains in clinically relevant models of disease.
Assuntos
Receptores de Antígenos/química , Receptores de Antígenos/metabolismo , Animais , Medicamentos Biossimilares , Glicosilação , Humanos , SolubilidadeRESUMO
It is well established that sustained increases in cyclic AMP (cAMP) such as those triggered by forskolin inhibit T cell activation. We describe here an unexpected phenomenon: in T cells, a transient cAMP increase triggered by the interaction with a dendritic cell strongly potentiates T cell receptor (TCR) signaling. We discovered this effect by examining the molecular basis of the adhesion-dependent sensitization of T cells. T cell adhesion caused extracellular-signal-regulated kinase (ERK) activation, which was necessary for the sensitization process. T cell sensitization could be mimicked in suspended cells by the uncaging of caged cAMP upon ultraviolet illumination. Calcium responses occurring in T cells upon interaction with dendritic cells were strongly inhibited when protein kinase A activation was blocked. Thus, whereas sustained cAMP increases are well known to inhibit TCR signaling, transient cAMP increases occurring physiologically upon formation of an immunological synapse facilitate antigen detection.