Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.728
Filtrar
1.
Nature ; 626(8001): 1141-1148, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38326620

RESUMO

The calcium-sensing receptor (CaSR) is a family C G-protein-coupled receptor1 (GPCR) that has a central role in regulating systemic calcium homeostasis2,3. Here we use cryo-electron microscopy and functional assays to investigate the activation of human CaSR embedded in lipid nanodiscs and its coupling to functional Gi versus Gq proteins in the presence and absence of the calcimimetic drug cinacalcet. High-resolution structures show that both Gi and Gq drive additional conformational changes in the activated CaSR dimer to stabilize a more extensive asymmetric interface of the seven-transmembrane domain (7TM) that involves key protein-lipid interactions. Selective Gi and Gq coupling by the receptor is achieved through substantial rearrangements of intracellular loop 2 and the C terminus, which contribute differentially towards the binding of the two G-protein subtypes, resulting in distinct CaSR-G-protein interfaces. The structures also reveal that natural polyamines target multiple sites on CaSR to enhance receptor activation by zipping negatively charged regions between two protomers. Furthermore, we find that the amino acid L-tryptophan, a well-known ligand of CaSR extracellular domains, occupies the 7TM bundle of the G-protein-coupled protomer at the same location as cinacalcet and other allosteric modulators. Together, these results provide a framework for G-protein activation and selectivity by CaSR, as well as its allosteric modulation by endogenous and exogenous ligands.


Assuntos
Proteínas Heterotriméricas de Ligação ao GTP , Receptores de Detecção de Cálcio , Humanos , Regulação Alostérica/efeitos dos fármacos , Cinacalcete/farmacologia , Microscopia Crioeletrônica , Subunidades alfa Gi-Go de Proteínas de Ligação ao GTP/metabolismo , Subunidades alfa Gq-G11 de Proteínas de Ligação ao GTP/metabolismo , Proteínas Heterotriméricas de Ligação ao GTP/metabolismo , Ligantes , Lipídeos , Nanoestruturas/química , Poliaminas/metabolismo , Conformação Proteica/efeitos dos fármacos , Receptores de Detecção de Cálcio/química , Receptores de Detecção de Cálcio/metabolismo , Receptores de Detecção de Cálcio/ultraestrutura , Especificidade por Substrato , Triptofano/metabolismo , Cálcio/metabolismo
2.
Nature ; 629(8011): 481-488, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38632411

RESUMO

The human calcium-sensing receptor (CaSR) detects fluctuations in the extracellular Ca2+ concentration and maintains Ca2+ homeostasis1,2. It also mediates diverse cellular processes not associated with Ca2+ balance3-5. The functional pleiotropy of CaSR arises in part from its ability to signal through several G-protein subtypes6. We determined structures of CaSR in complex with G proteins from three different subfamilies: Gq, Gi and Gs. We found that the homodimeric CaSR of each complex couples to a single G protein through a common mode. This involves the C-terminal helix of each Gα subunit binding to a shallow pocket that is formed in one CaSR subunit by all three intracellular loops (ICL1-ICL3), an extended transmembrane helix 3 and an ordered C-terminal region. G-protein binding expands the transmembrane dimer interface, which is further stabilized by phospholipid. The restraint imposed by the receptor dimer, in combination with ICL2, enables G-protein activation by facilitating conformational transition of Gα. We identified a single Gα residue that determines Gq and Gs versus Gi selectivity. The length and flexibility of ICL2 allows CaSR to bind all three Gα subtypes, thereby conferring capacity for promiscuous G-protein coupling.


Assuntos
Proteínas Heterotriméricas de Ligação ao GTP , Receptores de Detecção de Cálcio , Humanos , Cálcio/metabolismo , Subunidades alfa Gi-Go de Proteínas de Ligação ao GTP/metabolismo , Subunidades alfa Gi-Go de Proteínas de Ligação ao GTP/química , Subunidades alfa Gq-G11 de Proteínas de Ligação ao GTP/metabolismo , Subunidades alfa Gq-G11 de Proteínas de Ligação ao GTP/química , Subunidades alfa Gs de Proteínas de Ligação ao GTP/metabolismo , Subunidades alfa Gs de Proteínas de Ligação ao GTP/química , Modelos Moleculares , Ligação Proteica , Multimerização Proteica , Receptores de Detecção de Cálcio/metabolismo , Receptores de Detecção de Cálcio/química , Proteínas Heterotriméricas de Ligação ao GTP/química , Proteínas Heterotriméricas de Ligação ao GTP/metabolismo , Sítios de Ligação , Estrutura Secundária de Proteína , Especificidade por Substrato
3.
Nature ; 595(7867): 455-459, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34194040

RESUMO

The calcium-sensing receptor (CaSR), a cell-surface sensor for Ca2+, is the master regulator of calcium homeostasis in humans and is the target of calcimimetic drugs for the treatment of parathyroid disorders1. CaSR is a family C G-protein-coupled receptor2 that functions as an obligate homodimer, with each protomer composed of a Ca2+-binding extracellular domain and a seven-transmembrane-helix domain (7TM) that activates heterotrimeric G proteins. Here we present cryo-electron microscopy structures of near-full-length human CaSR in inactive or active states bound to Ca2+ and various calcilytic or calcimimetic drug molecules. We show that, upon activation, the CaSR homodimer adopts an asymmetric 7TM configuration that primes one protomer for G-protein coupling. This asymmetry is stabilized by 7TM-targeting calcimimetic drugs adopting distinctly different poses in the two protomers, whereas the binding of a calcilytic drug locks CaSR 7TMs in an inactive symmetric configuration. These results provide a detailed structural framework for CaSR activation and the rational design of therapeutics targeting this receptor.


Assuntos
Cálcio/metabolismo , Microscopia Crioeletrônica , Multimerização Proteica , Receptores de Detecção de Cálcio/química , Receptores de Detecção de Cálcio/metabolismo , Cálcio/química , Humanos , Modelos Moleculares , Peptídeos/química , Peptídeos/metabolismo , Ligação Proteica , Receptores de Detecção de Cálcio/ultraestrutura , Especificidade por Substrato
4.
Mol Biol Evol ; 41(2)2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38285634

RESUMO

Rainforest hunter-gatherers from Southeast Asia are characterized by specific morphological features including a particularly dark skin color (D), short stature (S), woolly hair (W), and the presence of steatopygia (S)-fat accumulation localized in the hips (DSWS phenotype). Based on previous evidence in the Andamanese population, we first characterized signatures of adaptive natural selection around the calcium-sensing receptor gene in Southeast Asian rainforest groups presenting the DSWS phenotype and identified the R990G substitution (rs1042636) as a putative adaptive variant for experimental follow-up. Although the calcium-sensing receptor has a critical role in calcium homeostasis by directly regulating the parathyroid hormone secretion, it is expressed in different tissues and has been described to be involved in many biological functions. Previous works have also characterized the R990G substitution as an activating polymorphism of the calcium-sensing receptor associated with hypocalcemia. Therefore, we generated a knock-in mouse for this substitution and investigated organismal phenotypes that could have become adaptive in rainforest hunter-gatherers from Southeast Asia. Interestingly, we found that mouse homozygous for the derived allele show not only lower serum calcium concentration but also greater body weight and fat accumulation, probably because of enhanced preadipocyte differentiation and lipolysis impairment resulting from the calcium-sensing receptor activation mediated by R990G. We speculate that such differential features in humans could have facilitated the survival of hunter-gatherer groups during periods of nutritional stress in the challenging conditions of the Southeast Asian tropical rainforests.


Assuntos
Polimorfismo Genético , Receptores de Detecção de Cálcio , Animais , Humanos , Camundongos , Cálcio , Fenótipo , Receptores de Detecção de Cálcio/genética , Seleção Genética
5.
Brain ; 147(10): 3379-3394, 2024 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-38537648

RESUMO

Dopamine's role as the principal neurotransmitter in motor functions has long been accepted. We broaden this conventional perspective by demonstrating the involvement of non-dopaminergic mechanisms. In mouse models of Parkinson's disease, we observed that L-DOPA elicited a substantial motor response even when its conversion to dopamine was blocked by inhibiting the enzyme aromatic amino acid decarboxylase (AADC). Remarkably, the motor activity response to L-DOPA in the presence of an AADC inhibitor (NSD1015) showed a delayed onset, yet greater intensity and longer duration, peaking at 7 h, compared to when L-DOPA was administered alone. This suggests an alternative pathway or mechanism, independent of dopamine signalling, mediating the motor functions. We sought to determine the metabolites associated with the pronounced hyperactivity observed, using comprehensive metabolomics analysis. Our results revealed that the peak in motor activity induced by NSD1015/L-DOPA in Parkinson's disease mice is associated with a surge (20-fold) in brain levels of the tripeptide ophthalmic acid (also known as ophthalmate in its anionic form). Interestingly, we found that administering ophthalmate directly to the brain rescued motor deficits in Parkinson's disease mice in a dose-dependent manner. We investigated the molecular mechanisms underlying ophthalmate's action and discovered, through radioligand binding and cAMP-luminescence assays, that ophthalmate binds to and activates the calcium-sensing receptor (CaSR). Additionally, our findings demonstrated that a CaSR antagonist inhibits the motor-enhancing effects of ophthalmate, further solidifying the evidence that ophthalmate modulates motor functions through the activation of the CaSR. The discovery of ophthalmate as a novel regulator of motor function presents significant potential to transform our understanding of brain mechanisms of movement control and the therapeutic management of related disorders.


Assuntos
Levodopa , Atividade Motora , Receptores de Detecção de Cálcio , Animais , Camundongos , Receptores de Detecção de Cálcio/metabolismo , Receptores de Detecção de Cálcio/antagonistas & inibidores , Levodopa/farmacologia , Atividade Motora/efeitos dos fármacos , Atividade Motora/fisiologia , Camundongos Endogâmicos C57BL , Transtornos dos Movimentos , Masculino , Oligopeptídeos/farmacologia , Dopamina/metabolismo , Humanos , Modelos Animais de Doenças
6.
Cell Mol Life Sci ; 81(1): 19, 2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-38196005

RESUMO

Cardiovascular disorders are commonly prevalent in cancer patients, yet the mechanistic link between them remains poorly understood. Because neutrophil extracellular traps (NETs) have implications not just in cardiovascular diseases (CVD), but also in breast cancer (BC), it was hypothesized to contribute to CVD in the context of oncogenesis. We established a mouse model using nude mice to simulate liver metastasis of triple-negative BC (TNBC) through the injection of MDA-MB-231 cells. Multiple imaging and analysis techniques were employed to assess the cardiac function and structure, including echocardiography, HE staining, Masson staining, and transmission electron microscopy (TEM). MDA-MB-231 cells underwent treatment with a CaSR inhibitor, CaSR agonist, and NF-κB channel blocker. The phosphorylation of NF-κB channel protein p65 and the expression and secretion of IL-8 were assessed using qRT-PCR, Western Blot, and ELISA, respectively. In addition, MDA-MB-231 cells were co-cultured with polymorphonuclear neutrophils (PMN) under varying conditions. The co-localization of PMN extracellular myeloperoxidase (MPO) and DNA were observed by cellular immunofluorescence staining to identify the formation of NETs. Then, the cardiomyocytes were co-cultured with the above medium that contains NETs or not, respectively; the effects of NETs on cardiomyocytes apoptosis were perceived by flow cytometry. The ultrastructural changes of myocardial cells were perceived by TEM, and ELISA detected the levels of myocardial enzyme (LDH, MDA and SOD). Overall, according to our research, CaSR has been found to have a regulatory role in IL-8 secretion in MDA-MB-231 cells, as well as in the formation of NETs by PMN cells. These findings suggest CaSR-mediated stimulation in PMN can lead to increased NETs formation and subsequently to cytotoxicity in cardiomyocytes, which potentially via activation of the NF-κB signaling cascade of BC cell.


Assuntos
Doenças Cardiovasculares , Armadilhas Extracelulares , Neoplasias de Mama Triplo Negativas , Humanos , Animais , Camundongos , NF-kappa B , Receptores de Detecção de Cálcio , Miócitos Cardíacos , Interleucina-8 , Camundongos Nus
7.
J Physiol ; 602(13): 3207-3224, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38367250

RESUMO

High concentrations of urinary calcium counteract vasopressin action via the activation of the Calcium-Sensing Receptor (CaSR) expressed in the luminal membrane of the collecting duct cells, which impairs the trafficking of aquaporin-2 (AQP2). In line with these findings, we provide evidence that, with respect to wild-type mice, CaSR knock-in (KI) mice mimicking autosomal dominant hypocalcaemia, display a significant decrease in the total content of AQP2 associated with significantly higher levels of AQP2 phosphorylation at Ser261, a phosphorylation site involved in AQP2 degradation. Interestingly, KI mice also had significantly higher levels of phosphorylated p38MAPK, a downstream effector of CaSR and known to phosphorylate AQP2 at Ser261. Moreover, ATF1 phosphorylated at Ser63, a transcription factor downstream of p38MAPK, was significantly higher in KI. In addition, KI mice had significantly higher levels of AQP2-targeting miRNA137 consistent with a post-transcriptional downregulation of AQP2. In vivo treatment of KI mice with the calcilytic JTT-305, a CaSR antagonist, increased AQP2 expression and reduced AQP2-targeting miRNA137 levels in KI mice. Together, these results provide direct evidence for a critical role of CaSR in impairing both short-term vasopressin response by increasing AQP2-pS261, as well as AQP2 abundance, via the p38MAPK-ATF1-miR137 pathway. KEY POINTS: Calcium-Sensing Receptor (CaSR) activating mutations are the main cause of autosomal dominant hypocalcaemia (ADH) characterized by inappropriate renal calcium excretion leading to hypocalcaemia and hypercalciuria. Current treatments of ADH patients with parathyroid hormone, although improving hypocalcaemia, do not improve hypercalciuria or nephrocalcinosis. In vivo treatment with calcilytic JTT-305/MK-5442 ameliorates most of the ADH phenotypes of the CaSR knock-in mice including hypercalciuria or nephrocalcinosis and reverses the downregulation of the vasopressin-sensitive aquaporin-2 (AQP2) expression, providing direct evidence for a critical role of CaSR in impairing vasopressin response. The beneficial effect of calcilytic in reducing the risk of renal calcification may occur in a parathyroid hormone-independent action through vasopressin-dependent inhibition of cAMP synthesis in the thick ascending limb and in the collecting duct. The amelioration of most of the abnormalities in calcium metabolism including hypercalciuria, renal calcification, and AQP2-mediated osmotic water reabsorption makes calcilytic a good candidate as a novel therapeutic agent for ADH.


Assuntos
Aquaporina 2 , Regulação para Baixo , Receptores de Detecção de Cálcio , Vasopressinas , Animais , Aquaporina 2/metabolismo , Aquaporina 2/genética , Receptores de Detecção de Cálcio/metabolismo , Receptores de Detecção de Cálcio/genética , Camundongos , Vasopressinas/metabolismo , Técnicas de Introdução de Genes , Rim/metabolismo , Rim/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Masculino , Transdução de Sinais , Fenótipo , Hipercalciúria/genética , Hipercalciúria/metabolismo , Hipercalciúria/tratamento farmacológico , Cálcio/metabolismo , Fosforilação , Hipocalcemia , Hipoparatireoidismo/congênito
8.
Pflugers Arch ; 476(5): 833-845, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38386045

RESUMO

The Calcium-sensing receptor (CaSR) senses extracellular calcium, regulates parathyroid hormone (PTH) secretion, and has additional functions in various organs related to systemic and local calcium and mineral homeostasis. Familial hypocalciuric hypercalcemia type I (FHH1) is caused by heterozygous loss-of-function mutations in the CaSR gene, and is characterized by the combination of hypercalcemia, hypocalciuria, normal to elevated PTH, and facultatively hypermagnesemia and mild bone mineralization defects. To date, only heterozygous Casr null mice have been available as model for FHH1. Here we present a novel mouse FHH1 model identified in a large ENU-screen that carries an c.2579 T > A (p.Ile859Asn) variant in the Casr gene (CasrBCH002 mice). In order to dissect direct effects of the genetic variant from PTH-dependent effects, we crossed CasrBCH002 mice with PTH deficient mice. Heterozygous CasrBCH002 mice were fertile, had normal growth and body weight, were hypercalcemic and hypermagnesemic with inappropriately normal PTH levels and urinary calcium excretion replicating some features of FHH1. Hypercalcemia and hypermagnesemia were independent from PTH and correlated with higher expression of claudin 16 and 19 in kidneys. Likewise, reduced expression of the renal TRPM6 channel in CasrBCH002 mice was not dependent on PTH. In bone, mutations in Casr rescued the bone phenotype observed in Pth null mice by increasing osteoclast numbers and improving the columnar pattern of chondrocytes in the growth zone. In summary, CasrBCH002 mice represent a new model to study FHH1 and our results indicate that only a part of the phenotype is driven by PTH.


Assuntos
Hipercalcemia , Hormônio Paratireóideo , Receptores de Detecção de Cálcio , Animais , Masculino , Camundongos , Cálcio/metabolismo , Modelos Animais de Doenças , Hipercalcemia/genética , Hipercalcemia/metabolismo , Hipercalcemia/congênito , Camundongos Endogâmicos C57BL , Hormônio Paratireóideo/metabolismo , Hormônio Paratireóideo/genética , Receptores de Detecção de Cálcio/genética , Receptores de Detecção de Cálcio/metabolismo
9.
Crit Rev Clin Lab Sci ; 61(6): 496-509, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38456354

RESUMO

Calcium is a fundamental and integrative element and helps to ensure optimal health by regulating various physiological and pathological processes. While there is substantiated evidence confirming the beneficial effects of calcium in the treatment, management, and prevention of various health conditions, including cancer, conflicting studies are imperative to acknowledge the potential negative role of calcium supplementation. The studies on calcium supplementation showed that a specific dose can help in the maintenance of good human health, and in the control of different types of diseases, including cancer. Calcium alone and when combined with vitamin D, emerges as a promising therapeutic option for efficiently managing cancer growth, when used with chemotherapy. Combination therapy is considered a more effective approach for treating advanced types of colorectal cancer. Nevertheless, several challenges drastically influence the treatment of cancer, such as individual discrepancy, drug resistance, and stage of cancer, among others. Henceforth, novel preventive, reliable therapeutic modalities are essential to control and reduce the incidence and mortality of colorectal cancer (CRC). The calcium-sensing receptor (CaSR) plays a pivotal role in calcium homeostasis, metabolism, and regulation of oncogenesis. Numerous studies have underscored the potential of CaSR, a G protein-coupled receptor, as a potential biomarker and target for colorectal cancer prevention and treatment. The multifaceted involvement of CaSR in anti-inflammatory and anti-carcinogenic processes paves the way for its utilization in the diagnosis and management of colorectal cancer. The current review highlights the important role of supplemental calcium in overall health and disease, along with the exploration of intricate mechanisms of CaSR pathways in the management and prevention of colorectal cancer.


Assuntos
Cálcio , Neoplasias Colorretais , Suplementos Nutricionais , Humanos , Neoplasias Colorretais/prevenção & controle , Neoplasias Colorretais/tratamento farmacológico , Cálcio/metabolismo , Receptores de Detecção de Cálcio/metabolismo , Vitamina D/uso terapêutico , Vitamina D/administração & dosagem
10.
Am J Physiol Renal Physiol ; 326(5): F792-F801, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38545651

RESUMO

The kidney controls systemic inorganic phosphate (Pi) levels by adapting reabsorption to Pi intake. Renal Pi reabsorption is mostly mediated by sodium-phosphate cotransporters NaPi-IIa (SLC34A1) and NaPi-IIc (SLC34A3) that are tightly controlled by various hormones including parathyroid hormone (PTH) and fibroblast growth factor 23 (FGF23). PTH and FGF23 rise in response to Pi intake and decrease NaPi-IIa and NaPi-IIc brush border membrane abundance enhancing phosphaturia. Phosphaturia and transporter regulation occurs even in the absence of PTH and FGF23 signaling. The calcium-sensing receptor (CaSR) regulates PTH and FGF23 secretion, and may also directly affect renal Pi handling. Here, we combined pharmacological and genetic approaches to examine the role of the CaSR in the acute phosphaturic response to Pi loading. Animals pretreated with the calcimimetic cinacalcet were hyperphosphatemic, had blunted PTH levels upon Pi administration, a reduced Pi-induced phosphaturia, and no Pi-induced NaPi-IIa downregulation. The calcilytic NPS-2143 exaggerated the PTH response to Pi loading but did not abolish Pi-induced downregulation of NaPi-IIa. In mice with a dominant inactivating mutation in the Casr (CasrBCH002), baseline NaPi-IIa expression was higher, whereas downregulation of transporter expression was blunted in double CasrBCH002/PTH knockout (KO) transgenic animals. Thus, in response to an acute Pi load, acute modulation of the CaSR affects the endocrine and renal response, whereas chronic genetic inactivation, displays only subtle differences in the downregulation of NaPi-IIa and NaPi-IIc renal expression. We did not find evidence that the CaSR impacts on the acute renal response to oral Pi loading beyond its role in regulating PTH secretion.NEW & NOTEWORTHY Consumption of phosphate-rich diets causes an adaptive response of the body leading to the urinary excretion of phosphate. The underlying mechanisms are still poorly understood. Here, we examined the role of the calcium-sensing receptor (CaSR) that senses both calcium and phosphate. We confirmed that the receptor increases the secretion of parathyroid hormone involved in stimulating urinary phosphate excretion. However, we did not find any evidence for a role of the receptor beyond this function.


Assuntos
Fator de Crescimento de Fibroblastos 23 , Rim , Hormônio Paratireóideo , Fosfatos , Receptores de Detecção de Cálcio , Proteínas Cotransportadoras de Sódio-Fosfato Tipo IIa , Proteínas Cotransportadoras de Sódio-Fosfato Tipo IIc , Animais , Masculino , Camundongos , Fatores de Crescimento de Fibroblastos/metabolismo , Fatores de Crescimento de Fibroblastos/genética , Rim/metabolismo , Rim/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Hormônio Paratireóideo/metabolismo , Fosfatos/metabolismo , Receptores de Detecção de Cálcio/metabolismo , Receptores de Detecção de Cálcio/genética , Reabsorção Renal/efeitos dos fármacos , Proteínas Cotransportadoras de Sódio-Fosfato Tipo IIa/metabolismo , Proteínas Cotransportadoras de Sódio-Fosfato Tipo IIa/genética , Proteínas Cotransportadoras de Sódio-Fosfato Tipo IIc/metabolismo , Proteínas Cotransportadoras de Sódio-Fosfato Tipo IIc/genética
11.
Am J Physiol Gastrointest Liver Physiol ; 326(4): G438-G459, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38193195

RESUMO

The calcium-sensing receptor (CaSR), a G protein-coupled receptor, regulates Ca2+ concentration in plasma by regulating parathyroid hormone secretion. In other tissues, it is reported to play roles in cellular differentiation and migration and in secretion and absorption. We reported previously that CaSR can be conditionally deleted in the mouse esophagus. This conditional knockout (KO) (EsoCaSR-/-) model showed a significant reduction in the levels of adherens and tight junction proteins and had a marked buildup of bacteria on the luminal esophageal surface. To further examine the role of CaSR, we used RNA sequencing to determine gene expression profiles in esophageal epithelia of control and EsoCaSR-/-mice RNA Seq data indicated upregulation of gene sets involved in DNA replication and cell cycle in EsoCaSR-/-. This is accompanied by the downregulation of gene sets involved in the innate immune response and protein homeostasis including peptide elongation and protein trafficking. Ingenuity pathway analysis (IPA) demonstrated that these genes are mapped to important biological networks including calcium and Ras homologus A (RhoA) signaling pathways. To further explore the bacterial buildup in EsoCaSR-/- esophageal tissue, 16S sequencing of the mucosal-associated bacterial microbiome was performed. Three bacterial species, g_Rodentibacter, s_Rodentibacter_unclassified, and s_Lactobacillus_hilgardi were significantly increased in EsoCaSR-/-. Furthermore, metagenomic analysis of 16S sequences indicated that pathways related to oxidative phosphorylation and metabolism were downregulated in EsoCaSR-/- tissues. These data demonstrate that CaSR impacts major pathways of cell proliferation, differentiation, cell cycle, and innate immune response in esophageal epithelium. The disruption of these pathways causes inflammation and significant modifications of the microbiome.NEW & NOTEWORTHY Calcium-sensing receptor (CaSR) plays a significant role in maintaining the barrier function of esophageal epithelium. Using RNA sequencing, we show that conditional deletion of CaSR from mouse esophagus causes upregulation of genes involved in DNA replication and cell cycle and downregulation of genes involved in the innate immune response, protein translation, and cellular protein synthesis. Pathway analysis shows disruption of signaling pathways of calcium and actin cytoskeleton. These changes caused inflammation and esophageal dysbiosis.


Assuntos
Cálcio , Microbiota , Animais , Camundongos , Cálcio/metabolismo , Receptores de Detecção de Cálcio/genética , Receptores de Detecção de Cálcio/metabolismo , Esôfago/metabolismo , Inflamação , Expressão Gênica
12.
Biochem Biophys Res Commun ; 695: 149401, 2024 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-38154264

RESUMO

Human calcium sensing receptor (CaSR) senses calcium ion concentrations in vivo and is an important class of drug targets. Mutations in the receptor can lead to disorders of calcium homeostasis, including hypercalcemia and hypocalcemia. Here, 127 CaSR-targeted nanobodies were generated from camels, and four nanobodies with inhibitory function were further identified. Among these nanobodies, NB32 can effectively inhibit the mobilization of intracellular calcium ions (Ca2+i) and suppress the G12/13 and ERK1/2 signaling pathways downstream of CaSR. Moreover, it enhanced the inhibitory effect of the calcilytics as a negative allosteric modulator (NAM). We determined the structure of complex and found NB32 bound to LB2 (Ligand-binding 2) domain of CaSR to prevent the interaction of LB2 domains of two protomers to stabilize the inactive state of CaSR.


Assuntos
Hipercalcemia , Hipocalcemia , Anticorpos de Domínio Único , Humanos , Receptores de Detecção de Cálcio/metabolismo , Cálcio/metabolismo , Hipocalcemia/genética , Hipercalcemia/genética
13.
Curr Opin Nephrol Hypertens ; 33(4): 433-440, 2024 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-38690798

RESUMO

PURPOSE OF REVIEW: Activation of the calcium-sensing receptor (CASR) in the parathyroid gland suppresses the release of parathyroid hormone (PTH). Furthermore, activation of the renal CASR directly increases the urinary excretion of calcium, by inhibiting transepithelial calcium transport in the nephron. Gain-of-function mutations in the CASR gene lead to autosomal dominant hypocalcemia 1 (ADH1), with inappropriately low PTH levels and hypocalcemia, indicative of excessive activation of the parathyroid CASR. However, hypercalciuria is not always observed. The reason why the manifestation of hypercalciuria is not uniform among ADH1 patients is not well understood. RECENT FINDINGS: Direct activation of the CASR in the kidney has been cumbersome to study, and an indirect measure to effectively estimate the degree of CASR activation following chronic hypercalcemia or genetic gain-of-function CASR activation has been lacking. Studies have shown that expression of the pore-blocking claudin-14 is strongly stimulated by the CASR in a dose-dependent manner. This stimulatory effect is abolished after renal Casr ablation in hypercalcemic mice, suggesting that claudin-14 abundance may gauge renal CASR activation. Using this marker has led to unexpected discoveries regarding renal CASR activation. SUMMARY: These new studies have informed on renal CASR activation thresholds and the downstream CASR-regulated calcium transport mechanisms.


Assuntos
Rim , Receptores de Detecção de Cálcio , Receptores de Detecção de Cálcio/metabolismo , Receptores de Detecção de Cálcio/genética , Humanos , Animais , Rim/metabolismo , Hipercalciúria/metabolismo , Hipercalciúria/genética , Cálcio/metabolismo , Hipercalcemia/metabolismo , Hipercalcemia/genética , Claudinas/metabolismo , Claudinas/genética , Hipocalcemia , Hipoparatireoidismo/congênito
14.
Curr Opin Nephrol Hypertens ; 33(4): 375-382, 2024 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-38701324

RESUMO

PURPOSE OF REVIEW: Parathyroid hormone (PTH) is the major peptide hormone regulator of blood calcium homeostasis. Abnormal PTH levels can be observed in patients with various congenital and acquired disorders, including chronic kidney disease (CKD). This review will focus on rare human diseases caused by PTH mutations that have provided insights into the regulation of PTH synthesis and secretion as well as the diagnostic utility of different PTH assays. RECENT FINDINGS: Over the past years, numerous diseases affecting calcium and phosphate homeostasis have been defined at the molecular level that are responsible for reduced or increased serum PTH levels. The underlying genetic mutations impair parathyroid gland development, involve the PTH gene itself, or alter function of the calcium-sensing receptor (CaSR) or its downstream signaling partners that contribute to regulation of PTH synthesis or secretion. Mutations in the pre sequence of the mature PTH peptide can, for instance, impair hormone synthesis or intracellular processing, while amino acid substitutions affecting the secreted PTH(1-84) impair PTH receptor (PTH1R) activation, or cause defective cleavage of the pro-sequence and thus secretion of a pro- PTH with much reduced biological activity. Mutations affecting the secreted hormone can alter detection by different PTH assays, thus requiring detailed knowledge of the utilized diagnostic test. SUMMARY: Rare diseases affecting PTH synthesis and secretion have offered helpful insights into parathyroid biology and the diagnostic utility of commonly used PTH assays, which may have implications for the interpretation of PTH measurements in more common disorders such as CKD.


Assuntos
Mutação , Hormônio Paratireóideo , Humanos , Hormônio Paratireóideo/metabolismo , Hormônio Paratireóideo/sangue , Hormônio Paratireóideo/genética , Receptores de Detecção de Cálcio/genética , Receptores de Detecção de Cálcio/metabolismo , Glândulas Paratireoides/metabolismo , Doenças Raras/diagnóstico , Doenças Raras/genética , Animais , Insuficiência Renal Crônica/diagnóstico , Insuficiência Renal Crônica/genética , Insuficiência Renal Crônica/metabolismo , Cálcio/metabolismo , Predisposição Genética para Doença , Valor Preditivo dos Testes , Receptor Tipo 1 de Hormônio Paratireóideo/metabolismo , Receptor Tipo 1 de Hormônio Paratireóideo/genética
15.
FASEB J ; 37(1): e22673, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36468692

RESUMO

Calcium modulates bone cell recruitment, differentiation, and function by binding to the calcium-sensing receptor (CaSR). However, the function of CaSR induced by high extracellular calcium (Ca2+ e ) in the regulation of osteoclast formation in rheumatoid arthritis (RA) remains unknown. Here, we used TNFα-transgenic (TNFTG ) RA mice and their wildtype (WT) littermates fed a normal or a rescue diet (high calcium, high phosphorus, and high lactose diet, termed rescue diet) to compare their joint bone phenotypes. In comparison to TNFTG mice fed the normal diet, articular bone volume and cartilage area are increased, whereas inflamed area, eroded surface, TRAP+ surface, and osteoclast-related genes expression are decreased in TNFTG mice fed the rescue diet. Besides, TNFTG mice fed the rescue diet were found to exhibit more CaSR+ area and less NFATc1+ /TRAP+ area. Furthermore, at normal Ca2+ e concentrations, osteoclast precursors (OCPs) from TNFTG mice formed more osteoclasts than OCPs from WT mice, but the number of osteoclasts gradually decreased when the Ca2+ e concentration increased. Meanwhile, the expression of CaSR increased responding to a high level of Ca2+ e , whereas the expression of NF-κB/NFATc1 signaling molecules decreased. At last, the knockdown of CaSR blocked the inhibition of osteoclast differentiation attributed to high Ca2+ e . Taken together, our findings indicate that high Ca2+ e inhibits osteoclast differentiation in RA mice partially through the CaSR/NF-κB/NFATc1 pathway.


Assuntos
Artrite Reumatoide , Receptores de Detecção de Cálcio , Camundongos , Animais , Receptores de Detecção de Cálcio/genética , Cálcio , Osteogênese , NF-kappa B , Dieta
16.
FASEB J ; 37(8): e23004, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37440279

RESUMO

The superficial zone cells in mandibular condylar cartilage are proliferative. The present purpose was to delineate the relation of calcium-sensing receptor (CaSR) and parathyroid hormone-related peptide nuclear localization sequence (PTHrP87-139 ), and their role in the proliferation behaviors of the superficial zone cells. A gain- and loss-of-function strategy were used in an in vitro fluid flow shear stress (FFSS) model and an in vivo bilateral elevation bite model which showed mandibular condylar cartilage thickening. CaSR and PTHrP87-139 were modulated through treating the isolated superficial zone cells with activator/SiRNA and via deleting CaSR or parathyroid hormone-related peptide (PTHrP) gene in mice with the promoter gene of proteoglycan 4 (Prg4-CreERT2 ) in the tamoxifen-inducible pattern with or without additional injection of Cinacalcet, the CaSR agonist, or PTHrP87-139 peptide. FFSS stimulated CaSR and PTHrP expression, and accelerated proliferation of the Prg4-expressing superficial zone cells, in which process CaSR acted as an up-streamer of PTHrP. Proteoglycan 4 specific knockout of CaSR or PTHrP reduced the cartilage thickness, suppressed the proliferation and early differentiation of the superficial zone cells, and inhibited cartilage thickening and matrix production promoted by bilateral elevation bite. Injections of CaSR agonist Cinacalcet could not improve the phenotype caused by PTHrP mutation. Injections of PTHrP87-139 peptide rescued the cartilage from knockout of CaSR gene. CaSR modulates proliferation of the superficial zone cells in mandibular condylar cartilage through activation of PTHrP nuclear localization sequence. Our data support the therapeutic target of CaSR in promoting PTHrP production in superficial zone cartilage.


Assuntos
Proteína Relacionada ao Hormônio Paratireóideo , Receptores de Detecção de Cálcio , Camundongos , Animais , Proteína Relacionada ao Hormônio Paratireóideo/genética , Proteína Relacionada ao Hormônio Paratireóideo/metabolismo , Receptores de Detecção de Cálcio/genética , Receptores de Detecção de Cálcio/metabolismo , Condrócitos/metabolismo , Cartilagem/metabolismo , Articulação Temporomandibular/metabolismo , Proteoglicanas/metabolismo , Proliferação de Células
17.
FASEB J ; 37(8): e23094, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37462513

RESUMO

Little is known about the effect of the recently developed calcimimetic evocalcet (Evo) on parathyroid calcium-sensing receptor (CaSR) and vitamin D receptor (VDR) expression. We examined the effects of Evo and cinacalcet (Cina) on CaSR and VDR expression in 5/6 nephrectomized Sprague-Dawley rats fed a high-phosphorus diet for 4 weeks to develop secondary hyperparathyroidism (SHPT). These uremic rats were divided into 4 groups-baseline control (Nx4W) and groups with additional treatment with either the Vehicle, Evo, or Cina for 2 weeks; normal rats were used as normal controls (NC). Blood parameters and parathyroid tissue were analyzed. CaSR and VDR expression levels were determined using immunohistochemistry. The degree of kidney injury and hyperphosphatemia was similar in the uremic groups (Nx4W, Vehicle, Cina, and Evo). Serum parathyroid hormone levels were significantly higher in the Nx4W and Vehicle groups than in the NC group. This increase was significantly suppressed in the Cina and Evo groups compared with that in the Vehicle group. Serum calcium levels were significantly and equally lower in the Cina and Evo groups relative to those in the Vehicle group. CaSR expression was significantly lower in the Nx4W and Vehicle groups than in the NC group. This downregulation was of an equally lesser magnitude in the Cina and Evo groups. A similar trend was observed for VDR expression. These results indicate that Evo and Cina treatment can increase parathyroid CaSR and VDR expression in uremic rats with SHPT, which could provide better control of mineral and bone disorder markers.


Assuntos
Hiperparatireoidismo Secundário , Receptores de Calcitriol , Ratos , Animais , Receptores de Calcitriol/metabolismo , Receptores de Detecção de Cálcio/metabolismo , Ratos Sprague-Dawley , Glândulas Paratireoides/metabolismo , Hiperparatireoidismo Secundário/tratamento farmacológico , Hiperparatireoidismo Secundário/complicações , Hiperparatireoidismo Secundário/metabolismo , Hormônio Paratireóideo/metabolismo , Cinacalcete/farmacologia , Cinacalcete/metabolismo
18.
J Surg Res ; 293: 618-624, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37837817

RESUMO

INTRODUCTION: Current imaging techniques have several limitations in detecting parathyroid glands. We have investigated the calcium-sensing receptor (CaSR) as a potential target for specifically labeling parathyroid glands for radiologic detection. For accurate imaging it is vital that a large differential expression exists between the target tissue and adjacent structures. We sought to investigate the relative abundance of the CaSR in normal and abnormal parathyroid tissue, as well as normal and abnormal thyroid. METHODS: Existing clinical specimens were selected that represented a wide variety of pathologically and clinically confirmed malignant and benign thyroid and parathyroid specimens. Sections were stained for the CaSR using immunohistochemistry and scored for intensity and abundance of expression. (H score = intensity scored from 0 to 3 multiplied by the % of cells at each intensity. Range 0-300). RESULTS: All parathyroid specimens expressed the CaSR to a high degree. Normal parathyroid had the highest H score (271, s.d. 25.4). Abnormal parathyroid specimens were slightly lower but still much higher than normal thyroid (H score 38.3, s.d. 23.3). Medullary thyroid cancer also expressed the CaSR significantly higher than normal thyroid (H score 182, s.d. 69.1, P < 0.001) but below parathyroid levels. Hürthle cell carcinoma expressed the CaSR to a lesser degree but higher than normal thyroid (H score 101, s.d. 46.4, P = 0.0037). CONCLUSIONS: The CaSR is differentially expressed on parathyroid tissue making it a feasible target for parathyroid imaging. False positives might be anticipated with medullary and Hürthle cell cancers.


Assuntos
Carcinoma Neuroendócrino , Neoplasias da Glândula Tireoide , Humanos , Carcinoma Neuroendócrino/patologia , Glândulas Paratireoides/diagnóstico por imagem , Glândulas Paratireoides/metabolismo , Receptores de Detecção de Cálcio/análise , Receptores de Detecção de Cálcio/metabolismo , Neoplasias da Glândula Tireoide/patologia
19.
Intern Med J ; 54(6): 852-860, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38665051

RESUMO

Calcium-sensing receptors (CaSRs) are G protein-coupled receptors that help maintain Ca2+ concentrations, modulating calciotropic hormone release (parathyroid hormone (PTH), calcitonin and 1,25-dihydroxyvitamin D) by direct actions in the kidneys, gastrointestinal tract and bone. Variability in population calcium levels has been attributed to single nucleotide polymorphisms in CaSR genes, and several conditions affecting calcium and phosphate homeostasis have been attributed to gain- or loss-of-function mutations. An example is autosomal dominant hypercalciuric hypocalcaemia, because of a missense mutation at codon 128 of chromosome 3, as reported in our specific case and her family. As a consequence of treating symptomatic hypocalcaemia as a child, this female subject slowly developed progressive end-stage kidney failure because of nephrocalcinosis and nephrolithiasis. After kidney transplantation, she remains asymptomatic, with decreased vitamin D and elemental calcium requirements, stable fluid and electrolyte homeostasis during intercurrent illnesses and has normalised urinary calcium and phosphate excretion, reducing the likelihood of hypercalciuria-induced graft impairment. We review the actions of the CaSR, its role in regulating renal Ca2+ homeostasis along with the impact of a proven gain-of-function mutation in the CaSR gene resulting in autosomal dominant hypercalciuric hypocalcaemia before and after kidney transplantation.


Assuntos
Cálcio , Homeostase , Transplante de Rim , Receptores de Detecção de Cálcio , Humanos , Receptores de Detecção de Cálcio/genética , Feminino , Cálcio/metabolismo , Hipocalcemia/genética , Hipocalcemia/etiologia , Hipercalciúria/genética , Hipercalcemia/genética , Rim/metabolismo , Mutação de Sentido Incorreto , Nefrocalcinose/genética , Falência Renal Crônica/cirurgia , Hipoparatireoidismo/congênito
20.
Proc Natl Acad Sci U S A ; 118(51)2021 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-34916296

RESUMO

The human extracellular calcium-sensing (CaS) receptor controls plasma Ca2+ levels and contributes to nutrient-dependent maintenance and metabolism of diverse organs. Allosteric modulation of the CaS receptor corrects disorders of calcium homeostasis. Here, we report the cryogenic-electron microscopy reconstructions of a near-full-length CaS receptor in the absence and presence of allosteric modulators. Activation of the homodimeric CaS receptor requires a break in the transmembrane 6 (TM6) helix of each subunit, which facilitates the formation of a TM6-mediated homodimer interface and expansion of homodimer interactions. This transformation in TM6 occurs without a positive allosteric modulator. Two modulators with opposite functional roles bind to overlapping sites within the transmembrane domain through common interactions, acting to stabilize distinct rotamer conformations of key residues on the TM6 helix. The positive modulator reinforces TM6 distortion and maximizes subunit contact to enhance receptor activity, while the negative modulator strengthens an intact TM6 to dampen receptor function. In both active and inactive states, the receptor displays symmetrical transmembrane conformations that are consistent with its homodimeric assembly.


Assuntos
Cálcio/metabolismo , Regulação da Expressão Gênica/fisiologia , Homeostase/fisiologia , Receptores de Detecção de Cálcio/metabolismo , Microscopia Crioeletrônica , Células HEK293 , Humanos , Modelos Moleculares , Conformação Proteica , Domínios Proteicos , Receptores de Detecção de Cálcio/genética , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA