Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Microb Pathog ; 193: 106712, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38851360

RESUMO

Porcine reproductive and respiratory syndrome (PRRS) is a major challenge for the global swine industry, causing huge economic losses worldwide. To date, there are no effective measures to prevent and control the spread of PRRS virus (PRRSV). Baicalin (BA) is a natural flavonoid with various pharmacological effects, including antiviral, anti-inflammatory, antioxidant and immunomodulatory. Here, we demonstrate that BA exhibits potent anti-PRRSV activity in vitro, BA concentrations in the range of 5-20 µg/mL significantly inhibited PRRSV infection in a dose-dependent manner and were independent of PRRSV strain. Mechanistically, BA inhibited PRRSV replication by directly interacting with virions, thereby affecting multiple stages of the virus life cycle. Meanwhile, the preventive effect of BA on PRRSV could be realized by inhibiting CD151 and CD163 expression. Furthermore, BA reduced the PRRSV-induced expression of PAMs cytokines (IFN-α, IL-6, IL-8, and TNF-α), suggesting that BA-induced antiviral cytokines may help BA inhibit PRRSV infection. Taken together, BA can be used as an inhibitor of PRRSV infection in vitro, which provides a theoretical basis for the clinical application of BA and the prevention and control of PRRSV infection, which is worthy of further in vivo studies in swine.


Assuntos
Antivirais , Citocinas , Flavonoides , Síndrome Respiratória e Reprodutiva Suína , Vírus da Síndrome Respiratória e Reprodutiva Suína , Replicação Viral , Vírus da Síndrome Respiratória e Reprodutiva Suína/efeitos dos fármacos , Animais , Flavonoides/farmacologia , Antivirais/farmacologia , Suínos , Replicação Viral/efeitos dos fármacos , Citocinas/metabolismo , Síndrome Respiratória e Reprodutiva Suína/virologia , Síndrome Respiratória e Reprodutiva Suína/tratamento farmacológico , Antígenos CD/metabolismo , Receptores de Superfície Celular/metabolismo , Linhagem Celular , Antígenos de Diferenciação Mielomonocítica
2.
Virol J ; 21(1): 150, 2024 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-38965549

RESUMO

Porcine reproductive and respiratory syndrome (PRRS) is endemic worldwide, seriously affecting the development of the pig industry, but vaccines have limited protective effects against PRRSV transmission. The aim of this study was to identify potential anti-PRRSV drugs. We examined the cytotoxicity of seven compounds formulated based on the mass ratio of glycyrrhizic acid to matrine and calculated their inhibition rates against PRRSV in vitro. The results showed that the seven compounds all had direct killing and therapeutic effects on PRRSV, and the compounds inhibited PRRSV replication in a time- and dose-dependent manner. The compound with the strongest anti-PRRSV effect was selected for subsequent in vivo experiments. Pigs were divided into a control group and a medication group for the in vivo evaluation. The results showed that pigs treated with the 4:1 compound had 100% morbidity after PRRSV challenge, and the mortality rate reached 75% on the 8th day of the virus challenge. These results suggest that this compound has no practical anti-PRRSV effect in vivo and can actually accelerate the death of infected pigs. Next, we further analyzed the pigs that exhibited semiprotective effects following vaccination with the compound to determine whether the compound can synergize with the vaccine in vivo. The results indicated that pigs treated with the compound had higher mortality rates and more severe clinical reactions after PRRSV infection (p < 0.05). The levels of proinflammatory cytokines (IL-6, IL-8, IL-1ß, IFN-γ, and TNF-α) were significantly greater in the compound-treated pigs than in the positive control-treated pigs (p < 0.05), and there was no synergistic enhancement with the live attenuated PRRSV vaccine (p < 0.05). The compound enhanced the inflammatory response, prompted the body to produce excessive levels of inflammatory cytokines and caused body damage, preventing a therapeutic effect. In conclusion, the present study revealed that the in vitro effectiveness of these agents does not indicate that they are effective in vivo or useful for developing anti-PRRSV drugs. Our findings also showed that, to identify effective anti-PRRSV drugs, comprehensive drug screening is needed, for compounds with solid anti-inflammatory effects both in vitro and in vivo. Our study may aid in the development of new anti-PRRSV drugs.


Assuntos
Alcaloides , Antivirais , Ácido Glicirrízico , Matrinas , Síndrome Respiratória e Reprodutiva Suína , Vírus da Síndrome Respiratória e Reprodutiva Suína , Quinolizinas , Replicação Viral , Animais , Vírus da Síndrome Respiratória e Reprodutiva Suína/efeitos dos fármacos , Alcaloides/farmacologia , Quinolizinas/farmacologia , Quinolizinas/uso terapêutico , Suínos , Antivirais/farmacologia , Antivirais/uso terapêutico , Ácido Glicirrízico/farmacologia , Ácido Glicirrízico/uso terapêutico , Síndrome Respiratória e Reprodutiva Suína/tratamento farmacológico , Síndrome Respiratória e Reprodutiva Suína/virologia , Síndrome Respiratória e Reprodutiva Suína/prevenção & controle , Replicação Viral/efeitos dos fármacos , Citocinas/metabolismo , Análise de Sobrevida
3.
BMC Vet Res ; 20(1): 111, 2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38515094

RESUMO

BACKGROUND: At present, porcine reproductive and respiratory syndrome (PRRS) caused by the PRRS virus (PRRSV) is one of the most severe epidemics impacting pig farming globally. Despite the fact that a number of studies have been conducted on potential solutions to this problem, none have proven effective. The focus of problem solving is the use of natural ingredients such as plant extracts. Popular throughout Asia, Caesalpinia sappan (CS) is a therapeutic plant that inhibits PRRSV in vitro. Therefore, this study was performed to determine the efficacy of CS extract dietary supplementation on the productive performance, antibody levels, immunological indicators, and lung pathology of PRRSV-challenged weaned pigs. A total of 32 weaned piglets (28 days old) were randomized into 4 groups and kept separately for 14 days. The treatments were organized in a 2 × 2 factorial design involving two factors: PRRSV challenge and supplementation with 1 mg/kg CS extract. The pigs in the PRRSV-challenged groups were intranasally inoculated with 2 mL of PRRSV (VR2332) containing 104 TCID50/mL, while those in the groups not challenged with PRRSV were inoculated with 2 mL of normal saline. RESULTS: In the PRRSV-challenged group (CS + PRRSV), supplementation with CS extract led to an increase in white blood cells (WBCs) on Day 7 post infection (p < 0.05) and particularly in lymphocytes on Days 7 and 14. The antibody titer was significantly greater in the CS + PRRSV group than in the PRRSV-challenged group not administered CS (PRRSV group) on Day 14 postinfection (S/P = 1.19 vs. 0.78). In addition, CS extract administration decreased the prevalence of pulmonary lesions, which were more prevalent in the PRRSV-challenged pigs that did not receive the CS extract. CONCLUSION: The findings of this study suggest that supplementation with CS extract is beneficial for increasing WBC counts, especially lymphocytes, increasing the levels of antibodies and reducing the prevalence of lung lesions in PRRSV-infected pigs.


Assuntos
Caesalpinia , Síndrome Respiratória e Reprodutiva Suína , Vírus da Síndrome Respiratória e Reprodutiva Suína , Doenças dos Suínos , Vacinas Virais , Animais , Anticorpos Antivirais , Suplementos Nutricionais , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , Síndrome Respiratória e Reprodutiva Suína/tratamento farmacológico , Síndrome Respiratória e Reprodutiva Suína/prevenção & controle , Suínos , Doenças dos Suínos/tratamento farmacológico , Doenças dos Suínos/prevenção & controle
4.
Vet Microbiol ; 292: 110054, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38507832

RESUMO

Porcine reproductive and respiratory syndrome virus (PRRSV) is a pathogen for swine, resulting in substantial economic losses to the swine industry. However, there has been little success in developing effective vaccines or drugs for PRRSV control. In the present study, we discovered that Diltiazem HCl, an inhibitor of L-type Ca2+ channel, effectively suppresses PRRSV replication in MARC-145, PK-15CD163 and PAM cells in dose-dependent manner. Furthermore, it demonstrates a broad-spectrum activity against both PRRSV-1 and PRRSV-2 strains. Additionally, we explored the underlying mechanisms and found that Diltiazem HCl -induced inhibition of PRRSV associated with regulation of calcium ion homeostasis in susceptible cells. Moreover, we evaluated the antiviral effects of Diltiazem HCl in PRRSV-challenged piglets, assessing rectal temperature, viremia, and gross and microscopic lung lesions. Our results indicate that Diltiazem HCl treatment alleviates PRRSV-induced rectal temperature spikes, pulmonary pathological changes, and serum viral load. In conclusion, our data suggest that Diltiazem HCl could serve as a novel therapeutic drug against PRRSV infection.


Assuntos
Síndrome Respiratória e Reprodutiva Suína , Vírus da Síndrome Respiratória e Reprodutiva Suína , Doenças dos Suínos , Animais , Suínos , Diltiazem/farmacologia , Linhagem Celular , Replicação Viral , Macrófagos Alveolares , Síndrome Respiratória e Reprodutiva Suína/tratamento farmacológico
5.
Vet Microbiol ; 290: 109991, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38228078

RESUMO

Porcine reproductive and respiratory syndrome virus is one of the main pathogens threatening the global pig industry, and there is still a lack of effective therapeutic drugs. Sanggenon C is a flavanone Diels-Alder adduct compound extracted from the root bark of the mulberry genus, which has blood pressure-reducing, anti-atherosclerotic, anti-oxidative, and anti-inflammatory effects. In our previous study, Sanggenon C was confirmed to significantly inhibit PRRSV replication in vitro. However, its antiviral potential to inhibit PRRSV infection in vivo has not been evaluated in piglets. Here, the antiviral effect of Sanggenon C was evaluated in PRRSV-challenged piglets based on assessments of rectal temperature, viral load, pathological changes of lung tissue and secretion of inflammatory cytokines. The results showed that Sanggenon C treatment relieved the clinical symptoms, reduced the viral loads in the lungs and bloods, alleviated the pathological damage of lung tissue, decreased the secretion of inflammatory cytokines, and shorten the excretion time of virus from the oral and nasal secretions and feces of piglets after PRRSV infection. The results indicated that Sanggenon C is a promising anti-PRRSV drug, which provides a new strategy for the prevention and control of PRRS in clinical practice.


Assuntos
Benzofuranos , Cromonas , Síndrome Respiratória e Reprodutiva Suína , Vírus da Síndrome Respiratória e Reprodutiva Suína , Doenças dos Suínos , Animais , Suínos , Síndrome Respiratória e Reprodutiva Suína/tratamento farmacológico , Síndrome Respiratória e Reprodutiva Suína/prevenção & controle , Citocinas , Antivirais/farmacologia , Antivirais/uso terapêutico , Replicação Viral , Doenças dos Suínos/patologia
6.
Vet Med Sci ; 10(4): e1536, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39016357

RESUMO

BACKGROUND: Porcine reproductive and respiratory syndrome virus (PRRSV) infection causes severe inflammatory response, respiratory disease and sow reproductive failure. Quercetin is among the widely occurring polypheno found abundantly in nature. Quercetin has anti-inflammatory, anti-oxidative and anti-viral properties. OBJECTIVES: This study aimed to explore the effect and mechanism of quercetin on PRRSV-induced inflammation in MARC-145 cells. METHODS: Observing the cytopathic effect and measurements of inflammatory markers in MARC-145 cells collectively demonstrate that quercetin elicits a curative effect on PRRSV-induced inflammation. Liquid chromatography-mass spectrometry was further used for a non-targeted metabolic analysis of the role of quercetin in the metabolic regulation of PRRSV inflammation in MARC-145 cells. RESULTS: It was shown that quercetin attenuated PRRSV-induced cytopathy in MARC-145 cells. Quercetin treatment inhibited PRRSV replication in MARC-145 cells in a dose-dependent manner. We also found that quercetin inhibited PRRSV-induced mRNA expression and secretion levels of tumour necrosis factor-α, interleukin 1ß and interleukin 6. Metabolomics analysis revealed that quercetin ameliorated PRRSV-induced inflammation. Pathway analysis results revealed that PRRSV-induced pathways including arachidonic acid metabolism, linoleic acid, glycerophospholipid and alanine, aspartate and glutamate metabolism were suppressed by quercetin. Moreover, we confirmed that quercetin inhibited the activation of NF-κB/p65 pathway, probably by attenuating PLA2, ALOX and COX mRNA expression. CONCLUSIONS: These results provide a crucial insight into the molecular mechanism of quercetin in alleviating PRRSV-induced inflammation.


Assuntos
Ácido Araquidônico , Glutamina , Inflamação , Vírus da Síndrome Respiratória e Reprodutiva Suína , Quercetina , Quercetina/farmacologia , Vírus da Síndrome Respiratória e Reprodutiva Suína/fisiologia , Vírus da Síndrome Respiratória e Reprodutiva Suína/efeitos dos fármacos , Animais , Linhagem Celular , Inflamação/virologia , Inflamação/tratamento farmacológico , Glutamina/metabolismo , Glutamina/farmacologia , Ácido Araquidônico/metabolismo , Suínos , Síndrome Respiratória e Reprodutiva Suína/virologia , Síndrome Respiratória e Reprodutiva Suína/tratamento farmacológico , Chlorocebus aethiops
7.
Virus Res ; 345: 199380, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38657837

RESUMO

The aim of this study was to investigate the in vitro and in vivo antiviral effects of CLEVir-X, against porcine reproductive and respiratory syndrome virus (PRRSV). CLEVir-X is a nucleoside analogue and a dialdehyde form of xanthosine. CLEVir-X demonstrated antiviral action during the in vitro portion of this experiment with its inosine monophosphate dehydrogenase (IMPDH) inhibition against PRRSV. The anti-PRRSV effect of CLEVir-X was recovered through supplementation with guanosine. This suggests that PRRSV replication may be regulated through IMPDH and its guanosine biosynthetic pathway. CLEVir-X treatment in cultures resulted in mutation frequency increase of up to 7.8-fold within the viral genomes (e.g. ORF6) compared to their parallel, untreated cultures. The incorporation of CLEVir-X into the viral genome causes lethal mutagenesis and subsequent decrease in specific infectivity. During the in vivo antiviral experiment, 21-day-old pigs began oral administration of 5 mL of phosphate buffered saline containing CLEVir-X (with purity of 68 % and dosage of 40 mg/kg body weight). This treatment was provided twice daily at 9:00AM and 5:00PM for 14 days. Pigs were simultaneously intranasally inoculated with PRRSV at the beginning of CLEVir-X treatment (21 days of age). Several beneficial effects from the oral administration of CLEVir-X were observed including reduction of body temperature, alleviation of respiratory clinical signs, decreased PRRSV load in both blood and lung tissues, and mitigation of lung interstitial pneumonia lesions. The results of the present study demonstrated that CLEVir-X has mutagenic and nonmutagenic modes of antiviral action against PRRSV based on both in vitro and in vivo antiviral experiments.


Assuntos
Antivirais , Síndrome Respiratória e Reprodutiva Suína , Vírus da Síndrome Respiratória e Reprodutiva Suína , Animais , Vírus da Síndrome Respiratória e Reprodutiva Suína/efeitos dos fármacos , Vírus da Síndrome Respiratória e Reprodutiva Suína/genética , Suínos , Antivirais/farmacologia , Síndrome Respiratória e Reprodutiva Suína/tratamento farmacológico , Síndrome Respiratória e Reprodutiva Suína/virologia , Replicação Viral/efeitos dos fármacos , Pulmão/virologia , Pulmão/efeitos dos fármacos , Pulmão/patologia , Carga Viral/efeitos dos fármacos , Administração Oral
8.
Nat Commun ; 15(1): 4813, 2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38844461

RESUMO

Porcine Reproductive and Respiratory Syndrome Virus (PRRSV) poses a major threat to the global swine industry, yet effective prevention and control measures remain elusive. This study unveils Nitazoxanide (NTZ) as a potent inhibitor of PRRSV both in vitro and in vivo. Through High-Throughput Screening techniques, 16 potential anti-PRRSV compounds are identified from a library comprising FDA-approved and pharmacopeial drugs. We show that NTZ displays strong efficacy in reducing PRRSV proliferation and transmission in a swine model, alleviating viremia and lung damage. Additionally, Tizoxanide (TIZ), the primary metabolite of NTZ, has been identified as a facilitator of NMRAL1 dimerization. This finding potentially sheds light on the underlying mechanism contributing to TIZ's role in augmenting the sensitivity of the IFN-ß pathway. These results indicate the promising potential of NTZ as a repurposed therapeutic agent for Porcine Reproductive and Respiratory Syndrome (PRRS). Additionally, they provide valuable insights into the antiviral mechanisms underlying NTZ's effectiveness.


Assuntos
Antivirais , Ensaios de Triagem em Larga Escala , Nitrocompostos , Síndrome Respiratória e Reprodutiva Suína , Vírus da Síndrome Respiratória e Reprodutiva Suína , Tiazóis , Animais , Vírus da Síndrome Respiratória e Reprodutiva Suína/efeitos dos fármacos , Nitrocompostos/farmacologia , Suínos , Antivirais/farmacologia , Ensaios de Triagem em Larga Escala/métodos , Síndrome Respiratória e Reprodutiva Suína/tratamento farmacológico , Síndrome Respiratória e Reprodutiva Suína/virologia , Tiazóis/farmacologia , Replicação Viral/efeitos dos fármacos , Linhagem Celular , Viremia/tratamento farmacológico , Viremia/virologia
9.
PLoS One ; 19(5): e0283728, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38709810

RESUMO

BACKGROUND: Traditional Chinese medicine (TCM) has been garnering ever-increasing worldwide attention as the herbal extracts and formulas prove to have potency against disease. Fuzhengjiedu San (FZJDS), has been extensively used to treat viral diseases in pigs, but its bioactive components and therapeutic mechanisms remain unclear. METHODS: In this study, we conducted an integrative approach of network pharmacology and experimental study to elucidate the mechanisms underlying FZJDS's action in treating porcine reproductive and respiratory syndrome virus (PRRSV). We constructed PPI network and screened the core targets according to their degree of value. GO and KEGG enrichment analyses were also carried out to identify relevant pathways. Lastly, qRT-PCR, flow cytometry and western blotting were used to determine the effects of FZJDS on core gene expression in PRRSV-infected monkey kidney (MARC-145) cells to further expand the results of network pharmacological analysis. RESULTS: Network pharmacology data revealed that quercetin, kaempferol, and luteolin were the main active compounds of FZJDS. The phosphatidylinositol-3-kinase (PI3K)/Akt pathway was deemed the cellular target as it has been shown to participate most in PRRSV replication and other PRRSV-related functions. Analysis by qRT-PCR and western blotting demonstrated that FZJDS significantly reduced the expression of P65, JNK, TLR4, N protein, Bax and IĸBa in MARC-145 cells, and increased the expression of Bcl-2, consistent with network pharmacology results. This study provides that FZJDS has significant antiviral activity through its effects on the PI3K/AKT signaling pathway. CONCLUSION: We conclude that FZJDS is a promising candidate herbal formulation for treating PRRSV and deserves further investigation.


Assuntos
Medicamentos de Ervas Chinesas , Fosfatidilinositol 3-Quinases , Vírus da Síndrome Respiratória e Reprodutiva Suína , Proteínas Proto-Oncogênicas c-akt , Transdução de Sinais , Animais , Antivirais/farmacologia , Antivirais/uso terapêutico , Linhagem Celular , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/uso terapêutico , Quempferóis/farmacologia , Luteolina/farmacologia , Fosfatidilinositol 3-Quinases/metabolismo , Síndrome Respiratória e Reprodutiva Suína/tratamento farmacológico , Síndrome Respiratória e Reprodutiva Suína/virologia , Vírus da Síndrome Respiratória e Reprodutiva Suína/efeitos dos fármacos , Vírus da Síndrome Respiratória e Reprodutiva Suína/fisiologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Quercetina/farmacologia , Quercetina/análogos & derivados , Transdução de Sinais/efeitos dos fármacos , Suínos , Replicação Viral/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA