Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 222
Filtrar
1.
Proc Natl Acad Sci U S A ; 120(45): e2307094120, 2023 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-37922327

RESUMO

Bone metastasis is a frequent and incurable consequence of advanced prostate cancer (PC). An interplay between disseminated tumor cells and heterogeneous bone resident cells in the metastatic niche initiates this process. Melanoma differentiation associated gene-9 (mda-9/Syntenin/syndecan binding protein) is a prometastatic gene expressed in multiple organs, including bone marrow-derived mesenchymal stromal cells (BM-MSCs), under both physiological and pathological conditions. We demonstrate that PDGF-AA secreted by tumor cells induces CXCL5 expression in BM-MSCs by suppressing MDA-9-dependent YAP/MST signaling. CXCL5-derived tumor cell proliferation and immune suppression are consequences of the MDA-9/CXCL5 signaling axis, promoting PC disease progression. mda-9 knockout tumor cells express less PDGF-AA and do not develop bone metastases. Our data document a previously undefined role of MDA-9/Syntenin in the tumor and microenvironment in regulating PC bone metastasis. This study provides a framework for translational strategies to ameliorate health complications and morbidity associated with advanced PC.


Assuntos
Neoplasias Ósseas , Melanoma , Neoplasias da Próstata , Masculino , Humanos , Sinteninas/genética , Sinteninas/metabolismo , Melanoma/metabolismo , Neoplasias da Próstata/genética , Transdução de Sinais/genética , Neoplasias Ósseas/genética , Linhagem Celular Tumoral , Microambiente Tumoral , Metástase Neoplásica
2.
Nature ; 575(7782): 366-370, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31546246

RESUMO

At least two members of the Toll-like receptor (TLR) family, TLR7 and TLR9, can recognize self-RNA and self-DNA, respectively. Despite the structural and functional similarities between these receptors, their contributions to autoimmune diseases such as systemic lupus erythematosus can differ. For example, TLR7 and TLR9 have opposing effects in mouse models of systemic lupus erythematosus-disease is exacerbated in TLR9-deficient mice but attenuated in TLR7-deficient mice1. However, the mechanisms of negative regulation that differentiate between TLR7 and TLR9 are unknown. Here we report a function for the TLR trafficking chaperone UNC93B1 that specifically limits signalling of TLR7, but not TLR9, and prevents TLR7-dependent autoimmunity in mice. Mutations in UNC93B1 that lead to enhanced TLR7 signalling also disrupt binding of UNC93B1 to syntenin-1, which has been implicated in the biogenesis of exosomes2. Both UNC93B1 and TLR7 can be detected in exosomes, suggesting that recruitment of syntenin-1 by UNC93B1 facilitates the sorting of TLR7 into intralumenal vesicles of multivesicular bodies, which terminates signalling. Binding of syntenin-1 requires phosphorylation of UNC93B1 and provides a mechanism for dynamic regulation of TLR7 activation and signalling. Thus, UNC93B1 not only enables the proper trafficking of nucleic acid-sensing TLRs, but also sets the activation threshold of potentially self-reactive TLR7.


Assuntos
Autoimunidade , Proteínas de Membrana Transportadoras/metabolismo , Transdução de Sinais , Sinteninas/metabolismo , Animais , Linhagem Celular , Humanos , Glicoproteínas de Membrana/metabolismo , Proteínas de Membrana Transportadoras/genética , Camundongos , Fosforilação , Polimorfismo de Nucleotídeo Único , Receptor 7 Toll-Like/metabolismo
3.
Hepatology ; 78(6): 1727-1741, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-36120720

RESUMO

BACKGROUND AND AIMS: The oncogene Melanoma differentiation associated gene-9/syndecan binding protein (MDA-9/SDCBP) is overexpressed in many cancers, promoting aggressive, metastatic disease. However, the role of MDA-9 in regulating hepatocellular carcinoma (HCC) has not been well studied. APPROACH AND RESULTS: To unravel the function of MDA-9 in HCC, we generated and characterized a transgenic mouse with hepatocyte-specific overexpression of MDA-9 (Alb/MDA-9). Compared with wild-type (WT) littermates, Alb/MDA-9 mice demonstrated significantly higher incidence of N-nitrosodiethylamine/phenobarbital-induced HCC, with marked activation and infiltration of macrophages. RNA sequencing (RNA-seq) in naive WT and Alb/MDA-9 hepatocytes identified activation of signaling pathways associated with invasion, angiogenesis, and inflammation, especially NF-κB and integrin-linked kinase signaling pathways. In nonparenchymal cells purified from naive livers, single-cell RNA-seq showed activation of Kupffer cells and macrophages in Alb/MDA-9 mice versus WT mice. A robust increase in the expression of Secreted phosphoprotein 1 (Spp1/osteopontin) was observed upon overexpression of MDA-9. Inhibition of NF-κB pathway blocked MDA-9-induced Spp1 induction, and knock down of Spp1 resulted in inhibition of MDA-9-induced macrophage migration, as well as angiogenesis. CONCLUSIONS: Alb/MDA-9 is a mouse model with MDA-9 overexpression in any tissue type. Our findings unravel an HCC-promoting role of MDA-9 mediated by NF-κB and Spp1 and support the rationale of using MDA-9 inhibitors as a potential treatment for aggressive HCC.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Melanoma , Camundongos , Animais , Carcinoma Hepatocelular/patologia , Neoplasias Hepáticas/patologia , NF-kappa B/metabolismo , Sinteninas/genética , Sinteninas/metabolismo , Camundongos Transgênicos , Linhagem Celular Tumoral
4.
Proc Natl Acad Sci U S A ; 118(21)2021 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-34016751

RESUMO

Melanoma differentiation associated gene-9 (MDA-9), Syntenin-1, or syndecan binding protein is a differentially regulated prometastatic gene with elevated expression in advanced stages of melanoma. MDA-9/Syntenin expression positively associates with advanced disease stage in multiple histologically distinct cancers and negatively correlates with patient survival and response to chemotherapy. MDA-9/Syntenin is a highly conserved PDZ-domain scaffold protein, robustly expressed in a spectrum of diverse cancer cell lines and clinical samples. PDZ domains interact with a number of proteins, many of which are critical regulators of signaling cascades in cancer. Knockdown of MDA-9/Syntenin decreases cancer cell metastasis, sensitizing these cells to radiation. Genetic silencing of MDA-9/Syntenin or treatment with a pharmacological inhibitor of the PDZ1 domain, PDZ1i, also activates the immune system to kill cancer cells. Additionally, suppression of MDA-9/Syntenin deregulates myeloid-derived suppressor cell differentiation via the STAT3/interleukin (IL)-1ß pathway, which concomitantly promotes activation of cytotoxic T lymphocytes. Biologically, PDZ1i treatment decreases metastatic nodule formation in the lungs, resulting in significantly fewer invasive cancer cells. In summary, our observations indicate that MDA-9/Syntenin provides a direct therapeutic target for mitigating aggressive breast cancer and a small-molecule inhibitor, PDZ1i, provides a promising reagent for inhibiting advanced breast cancer pathogenesis.


Assuntos
Antineoplásicos/farmacologia , Neoplasias da Mama/tratamento farmacológico , Interleucina-1beta/genética , Neoplasias Pulmonares/tratamento farmacológico , Oxidiazóis/farmacologia , Pirimidinas/farmacologia , Sinteninas/genética , Animais , Antineoplásicos/síntese química , Neoplasias da Mama/genética , Neoplasias da Mama/imunologia , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Quimiocina CCL11/genética , Quimiocina CCL11/imunologia , Quimiocina CCL17/genética , Quimiocina CCL17/imunologia , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Interleucina-10/genética , Interleucina-10/imunologia , Interleucina-1alfa/genética , Interleucina-1alfa/imunologia , Interleucina-1beta/antagonistas & inibidores , Interleucina-1beta/imunologia , Subunidade p19 da Interleucina-23/genética , Subunidade p19 da Interleucina-23/imunologia , Interleucina-5/genética , Interleucina-5/imunologia , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/imunologia , Neoplasias Pulmonares/secundário , Camundongos , Camundongos Endogâmicos BALB C , Oxidiazóis/síntese química , Pirimidinas/síntese química , Transdução de Sinais , Sinteninas/antagonistas & inibidores , Sinteninas/imunologia , Linfócitos T Citotóxicos/efeitos dos fármacos , Linfócitos T Citotóxicos/imunologia , Linfócitos T Citotóxicos/patologia , Carga Tumoral/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto
5.
Gut ; 72(9): 1722-1737, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-36828627

RESUMO

OBJECTIVE: Pancreatic ductal adenocarcinoma (PDAC) is a highly lethal tumour with limited treatment options. Here, we identified syndecan binding protein (SDCBP), also known as syntenin1, as a novel targetable factor in promoting PDAC tumour progression. We also explored a therapeutic strategy for suppressing SDCBP expression. DESIGN: We used samples from patients with PDAC, human organoid models, LSL-KrasG12D/+mice, LSL-Trp53R172H/+ and Pdx1-Cre (KPC) mouse models, and PDX mouse models. Immunostaining, colony formation assay, ethynyl-2-deoxyuridine incorporation assay, real-time cell analysis, cell apoptosis assay, automated cell tracking, invadopodia detection and gelatin degradation assays, coimmunoprecipitation, and pull-down assays were performed in this study. RESULTS: The median overall survival and recurrence-free survival rates in the high-SDCBP group were significantly shorter than those in the low-SDCBP group. In vitro and in vivo studies have demonstrated that SDCBP promotes PDAC proliferation and metastasis. Mechanically, SDCBP inhibits CK1δ/ε-mediated YAP-S384/S387 phosphorylation, which further suppresses ß-TrCP-mediated YAP1 ubiquitination and proteasome degradation by directly interacting with YAP1. SDCBP interacts with the TAD domain of YAP1, mainly through its PDZ1 domain. Preclinical KPC mouse cohorts demonstrated that zinc pyrithione (ZnPT) suppresses PDAC tumour progression by suppressing SDCBP. CONCLUSIONS: SDCBP promotes the proliferation and metastasis of PDAC by preventing YAP1 from ß-TrCP-mediated proteasomal degradation. Therefore, ZnPT could be a promising therapeutic strategy to inhibit PDAC progression by suppressing SDCBP.


Assuntos
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Humanos , Camundongos , Animais , Proteínas Contendo Repetições de beta-Transducina/metabolismo , Neoplasias Pancreáticas/patologia , Pâncreas/patologia , Carcinoma Ductal Pancreático/patologia , Proliferação de Células , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica , Sinteninas/metabolismo , Neoplasias Pancreáticas
6.
J Biol Chem ; 298(10): 102425, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36030822

RESUMO

Alix is a ubiquitously expressed scaffold protein that participates in numerous cellular processes related to the remodeling/repair of membranes and the actin cytoskeleton. Alix exists in monomeric and dimeric/multimeric configurations, but how dimer formation occurs and what role the dimer has in Alix-mediated processes are still largely elusive. Here, we reveal a mechanism for Alix homodimerization mediated by disulfide bonds under physiological conditions and demonstrate that the Alix dimer is enriched in exosomes and F-actin cytoskeleton subcellular fractions. Proteomic analysis of exosomes derived from Alix-/- primary cells underlined the indispensable role of Alix in loading syntenin into exosomes, thereby regulating the cellular levels of this protein. Using a set of deletion mutants, we define the function of Alix Bro1 domain, which is solely required for its exosomal localization, and that of the V domain, which is needed for recruiting syntenin into exosomes. We reveal an essential role for Cys814 within the disordered proline-rich domain for Alix dimerization. By mutating this residue, we show that Alix remains exclusively monomeric and, in this configuration, is effective in loading syntenin into exosomes. In contrast, loss of dimerization affects the ability of Alix to associate with F-actin, thereby compromising Alix-mediated cytoskeleton remodeling. We propose that dimeric and monomeric forms of Alix selectively execute two of the protein's main functions: exosomal cargo loading and cytoskeleton remodeling.


Assuntos
Actinas , Proteínas de Ligação ao Cálcio , Exossomos , Sinteninas , Citoesqueleto de Actina/metabolismo , Actinas/metabolismo , Proteínas de Ligação ao Cálcio/genética , Proteínas de Ligação ao Cálcio/metabolismo , Proteínas de Ciclo Celular/metabolismo , Complexos Endossomais de Distribuição Requeridos para Transporte/metabolismo , Exossomos/metabolismo , Proteômica , Sinteninas/metabolismo , Humanos , Animais , Camundongos , Multimerização Proteica
7.
Ann Rheum Dis ; 82(4): 483-495, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36593091

RESUMO

OBJECTIVES: Syntenin-1, a novel endogenous ligand, was discovered to be enriched in rheumatoid arthritis (RA) specimens compared with osteoarthritis synovial fluid and normal synovial tissue (ST). However, the cellular origin, immunoregulation and molecular mechanism of syntenin-1 are undescribed in RA. METHODS: RA patient myeloid and lymphoid cells, as well as preclinical models, were used to investigate the impact of syntenin-1/syndecan-1 on the inflammatory and metabolic landscape. RESULTS: Syntenin-1 and syndecan-1 (SDC-1) co-localise on RA ST macrophages (MΦs) and endothelial cells. Intriguingly, blood syntenin-1 and ST SDC-1 transcriptome are linked to cyclic citrullinated peptide, erythrocyte sedimentation rate, ST thickness and bone erosion. Metabolic CD14+CD86+GLUT1+MΦs reprogrammed by syntenin-1 exhibit a wide range of proinflammatory interferon transcription factors, monokines and glycolytic factors, along with reduced oxidative intermediates that are downregulated by blockade of SDC-1, glucose uptake and/or mTOR signalling. Inversely, IL-5R and PDZ1 inhibition are ineffective on RA MΦs-reprogrammed by syntenin-1. In syntenin-1-induced arthritis, F4/80+iNOS+RAPTOR+MΦs represent glycolytic RA MΦs, by amplifying the inflammatory and glycolytic networks. Those networks are abrogated in SDC-1-/- animals, while joint prorepair monokines are unaffected and the oxidative metabolites are moderately replenished. In RA cells and/or preclinical model, syntenin-1-induced arthritogenicity is dependent on mTOR-activated MΦ remodelling and its ability to cross-regulate Th1 cells via IL-12 and IL-18 induction. Moreover, RA and joint myeloid cells exposed to Syntenin-1 are primed to transform into osteoclasts via SDC-1 ligation and RANK, CTSK and NFATc1 transcriptional upregulation. CONCLUSION: The syntenin-1/SDC-1 pathway plays a critical role in the inflammatory and metabolic landscape of RA through glycolytic MΦ and Th1 cell cross-regulation (graphical abstract).


Assuntos
Artrite Reumatoide , Células Th1 , Animais , Humanos , Células Endoteliais/metabolismo , Macrófagos/metabolismo , Monocinas/metabolismo , Sindecana-1/metabolismo , Líquido Sinovial/metabolismo , Membrana Sinovial/metabolismo , Sinteninas/metabolismo , Serina-Treonina Quinases TOR
8.
BMC Microbiol ; 23(1): 271, 2023 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-37759206

RESUMO

Anaplasma phagocytophilum is an intracellular obligate parasite that causes granulocytic anaplasmosis. Effector Ats-1 is an important virulence factor of A. phagocytophilum. Multiomics screening and validation has been used to determine that Ats-1 regulates host cell apoptosis and energy metabolism through the respiratory chain mPTP axis. In this study, a total of 19 potential binding proteins of Ats-1 in host cells were preliminarily screened using a yeast two-hybrid assay, and the interaction between syntenin-1 (SDCBP) and Ats-1 was identified through immunoprecipitation. Bioinformatics analysis showed that SDCBP interacted with SDC1, SDC2, and SDC4 and participated in the host exosome secretion pathway. Further studies confirmed that Ats-1 induced the expression of SDC1, SDC2, and SDC4 in HEK293T cells through SDCBP and increased the exosome secretion of these cells. This indicated that SDCBP played an important role in Ats-1 regulating the exosome secretion of the host cells. These findings expand our understanding of the intracellular regulatory mechanism of A. phagocytophilum, which may enhance its own infection and proliferation by regulating host exosome pathways.


Assuntos
Anaplasma phagocytophilum , Anaplasmose , Exossomos , Animais , Humanos , Sinteninas , Células HEK293
9.
Gynecol Oncol ; 173: 114-121, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37121178

RESUMO

OBJECTIVE: To demonstrate that shared antibody responses in endometriosis and endometriosis-associated ovarian cancer spontaneously antagonize malignant progression and can be leveraged to develop future immunotherapies. METHODS: B cells from cyopreserved clear cell ovarian carcinoma (CCC, n = 2), endometrioid ovarian carcinoma (EC, n = 2), and endometriomas (n = 2) were isolated, activated, and EBV-immortalized. Antibodies were purified from B cell supernatants and used for screening arrays containing most of the human proteome. Targets were prioritized based on accessibility (transmembrane or secreted proteins), expression in endometriosis and cancer, and concurrent IgA and IgG responses. We focused on antibodies targeting tumor-promoting syndecan binding protein (SDCBP) to demonstrate anti-tumor activity. Immunoblots and qPCR were performed to assess SDCBP expression in ovarian cancer and endometriosis cell lines and tumor samples. Recombinant IgG4 was generated using the variable heavy and light chains of dominant B cell receptors (BCRs) reacting against the extracellular domain of SDCBP, and used in in vivo studies in human CCC- and high-grade serous ovarian carcinoma (HGSOC)-bearing immunodeficient mice. RESULTS: Nine accessible proteins detected by both IgA and IgG were identified in all samples - including SDCBP, which is expressed in ovarian carcinomas of multiple histologies. Administration of α-SDCBP IgG4 in OVCAR3 (HGSOC), TOV21G and RMG-I (CCC) tumor-bearing mice significantly decreased tumor volume compared to control irrelevant IgG4. CONCLUSIONS: Spontaneous antibody responses exert suboptimal but measurable immune pressure against malignant progression in ovarian carcinomas. Using tumor-derived antibodies for developing novel immunotherapeutics warrants further investigation.


Assuntos
Adenocarcinoma de Células Claras , Carcinoma Endometrioide , Endometriose , Neoplasias Ovarianas , Humanos , Feminino , Animais , Camundongos , Neoplasias Ovarianas/patologia , Apoptose , Formação de Anticorpos , Linhagem Celular Tumoral , Carcinoma Epitelial do Ovário , Carcinoma Endometrioide/patologia , Imunoglobulina A/metabolismo , Adenocarcinoma de Células Claras/patologia , Sinteninas/metabolismo
10.
Proc Natl Acad Sci U S A ; 117(11): 5913-5922, 2020 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-32108028

RESUMO

Exosomes, extracellular vesicles (EVs) of endosomal origin, emerge as master regulators of cell-to-cell signaling in physiology and disease. Exosomes are highly enriched in tetraspanins (TSPNs) and syndecans (SDCs), the latter occurring mainly in proteolytically cleaved form, as membrane-spanning C-terminal fragments of the proteins. While both protein families are membrane scaffolds appreciated for their role in exosome formation, composition, and activity, we currently ignore whether these work together to control exosome biology. Here we show that TSPN6, a poorly characterized tetraspanin, acts as a negative regulator of exosome release, supporting the lysosomal degradation of SDC4 and syntenin. We demonstrate that TSPN6 tightly associates with SDC4, the SDC4-TSPN6 association dictating the association of TSPN6 with syntenin and the TSPN6-dependent lysosomal degradation of SDC4-syntenin. TSPN6 also inhibits the shedding of the SDC4 ectodomain, mimicking the effects of matrix metalloproteinase inhibitors. Taken together, our data identify TSPN6 as a regulator of the trafficking and processing of SDC4 and highlight an important physical and functional interconnection between these membrane scaffolds for the production of exosomes. These findings clarify our understanding of the molecular determinants governing EV formation and have potentially broad impact for EV-related biomedicine.


Assuntos
Exossomos/metabolismo , Sinteninas/metabolismo , Tetraspaninas/metabolismo , Comunicação Celular , Exossomos/genética , Vesículas Extracelulares/metabolismo , Humanos , Lisossomos/metabolismo , Células MCF-7 , Metaloproteinases da Matriz/metabolismo , Transporte Proteico , Sindecana-4/metabolismo , Sindecanas/metabolismo
11.
Int J Mol Sci ; 24(11)2023 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-37298370

RESUMO

Syntenin acts as an adaptor and scaffold protein through its two PSD-95, Dlg, and ZO-1 (PDZ) domains, participating in multiple signaling pathways and modulating cellular physiology. It has been identified as an oncogene, promoting cancer development, metastasis, and angiogenesis in various carcinomas. Syntenin-1 is also associated with the production and release of exosomes, small extracellular vesicles that play a significant role in intercellular communication by containing bioactive molecules such as proteins, lipids, and nucleic acids. The trafficking of exosomes involves a complex interplay of various regulatory proteins, including syntenin-1, which interacts with its binding partners, syndecan and activated leukocyte cell adhesion molecule (ALIX). Exosomal transfer of microRNAs, a key cargo, can regulate the expression of various cancer-related genes, including syntenin-1. Targeting the mechanism involving the regulation of exosomes by syntenin-1 and microRNAs may provide a novel treatment strategy for cancer. This review highlights the current understanding of syntenin-1's role in regulating exosome trafficking and its associated cellular signaling pathways.


Assuntos
Exossomos , MicroRNAs , Neoplasias , Humanos , Exossomos/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Neoplasias/genética , Neoplasias/metabolismo , Sindecanas/metabolismo , Sinteninas/metabolismo
12.
Biotechnol Appl Biochem ; 69(1): 240-247, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33432665

RESUMO

Syndecan-binding protein (SDCBP) has been reported to critically process a core role in tumorigenesis. This study was conducted to characterize a novel regulatory network of SDCBP in gastric carcinoma (GC) cells. Our findings indicated that overexpression of SDCBP promoted the proliferation of GC cell and increased proliferating cell nuclear antigen (PCNA) expression. Moreover, the overexpression of SDCBP suppressed the apoptosis of GC cell along with a decrease of Bax/Bcl-2 ratio and induction of PI3K/AKT/mTOR activation. However, knockdown of SDCBP exhibited opposed effects on GC cells. Furthermore, silencing SDCBP significantly inhibited GC cell viability and PCNA expression accompanied with the upregulated cell apoptosis and Bax/Bcl-2 ratio, which was regulated by PI3K/AKT/mTOR signaling pathway. And it was further determined that PI3K inhibitor LY294002, AKT inhibitor Torin1, and mTOR inhibitor MK-2206 suppressed the apoptosis. In conclusion, SDCBP promotes the growth ability of GC by inducing the PCNA expression and inhibiting GC cell apoptosis via inactivation of the PI3K/AKT/mTOR pathway.


Assuntos
Carcinoma , Fosfatidilinositol 3-Quinases , Apoptose , Linhagem Celular Tumoral , Proliferação de Células , Regulação para Baixo , Humanos , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Sinteninas , Serina-Treonina Quinases TOR/genética , Serina-Treonina Quinases TOR/metabolismo
13.
J Cell Mol Med ; 25(14): 7001-7012, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34137173

RESUMO

The coronavirus disease 2019 (COVID-19), caused by the novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has resulted in many deaths throughout the world. It is vital to identify the novel prognostic biomarkers and therapeutic targets to assist with the subsequent diagnosis and treatment plan to mitigate the expansion of COVID-19. Since angiotensin-converting enzyme 2 (ACE2)-positive cells are hosts for COVID-19, we focussed on this cell type to explore the underlying mechanisms of COVID-19. In this study, we identified that ACE2-positive cells from the bronchoalveolar lavage fluid (BALF) of patients with COVID-19 belong to bronchial epithelial cells. Comparing with patients of COVID-19 showing severe symptoms, the antigen processing and presentation pathway was increased and 12 typical genes, HLA-DRB5, HLA-DRB1, CD74, HLA-DRA, HLA-DPA1, HLA-DQA1, HSP90AA1, HSP90AB1, HLA-DPB1, HLA-DQB1, HLA-DQA2, and HLA-DMA, particularly HLA-DPB1, were obviously up-regulated in ACE2-positive bronchial epithelial cells of patients with mild disease. We further discovered SDCBP was positively correlated with above 12 genes particularly with HLA-DPB1 in ACE2-positive bronchial epithelial cells of COVID-19 patients. Moreover, SDCBP may increase the immune infiltration of B cells, CD8+ T cells, CD4+ T cells, macrophages, neutrophils and dendritic cells in different lung carcinoma. Moreover, we found the expression of SDCBP was positively correlated with the expression of antigen processing and presentation genes in post-mortem lung biopsies tissues, which is consistent with previous discoveries. These results suggest that SDCBP has good potential to be further developed as a novel diagnostic and therapeutic target in the treatment of COVID-19.


Assuntos
Enzima de Conversão de Angiotensina 2/metabolismo , Brônquios/patologia , COVID-19/patologia , Células Epiteliais/metabolismo , RNA-Seq , Índice de Gravidade de Doença , Análise de Célula Única , Sinteninas/metabolismo , Apresentação de Antígeno/genética , Líquido da Lavagem Broncoalveolar , COVID-19/genética , COVID-19/metabolismo , Células Epiteliais/patologia , Perfilação da Expressão Gênica , Humanos , Mudanças Depois da Morte , SARS-CoV-2/fisiologia , Regulação para Cima/genética
14.
Cancer Metastasis Rev ; 39(3): 769-781, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32410111

RESUMO

Tumor metastasis comprises a series of coordinated events that culminate in dissemination of cancer cells to distant sites within the body representing the greatest challenge impeding effective therapy of cancer and the leading cause of cancer-associated morbidity. Cancer cells exploit multiple genes and pathways to colonize to distant organs. These pathways are integrated and regulated at different levels by cellular- and extracellular-associated factors. Defining the genes and pathways that govern metastasis can provide new targets for therapeutic intervention. Melanoma differentiation associated gene-9 (mda-9) (also known as Syntenin-1 and SDCBP (Syndecan binding protein)) was identified by subtraction hybridization as a novel gene displaying differential temporal expression during differentiation of melanoma. MDA-9/Syntenin is an established Syndecan binding protein that functions as an adaptor protein. Expression of MDA-9/Syntenin is elevated at an RNA and protein level in a wide-range of cancers including melanoma, glioblastoma, neuroblastoma, and prostate, breast and liver cancer. Expression is increased significantly in metastatic cancer cells as compared with non-metastatic cancer cells or normal cells, which make it an attractive target in treating cancer metastasis. In this review, we focus on the role and regulation of mda-9 in cancer progression and metastasis.


Assuntos
Neoplasias/metabolismo , Sinteninas/metabolismo , Animais , Humanos , Metástase Neoplásica , Neoplasias/genética , Neoplasias/patologia , Sinteninas/genética
15.
Proc Natl Acad Sci U S A ; 115(22): 5768-5773, 2018 05 29.
Artigo em Inglês | MEDLINE | ID: mdl-29760085

RESUMO

Glioma stem cells (GSCs) comprise a small subpopulation of glioblastoma multiforme cells that contribute to therapy resistance, poor prognosis, and tumor recurrence. Protective autophagy promotes resistance of GSCs to anoikis, a form of programmed cell death occurring when anchorage-dependent cells detach from the extracellular matrix. In nonadherent conditions, GSCs display protective autophagy and anoikis-resistance, which correlates with expression of melanoma differentiation associated gene-9/Syntenin (MDA-9) (syndecan binding protein; SDCBP). When MDA-9 is suppressed, GSCs undergo autophagic death supporting the hypothesis that MDA-9 regulates protective autophagy in GSCs under anoikis conditions. MDA-9 maintains protective autophagy through phosphorylation of BCL2 and by suppressing high levels of autophagy through EGFR signaling. MDA-9 promotes these changes by modifying FAK and PKC signaling. Gain-of-function and loss-of-function genetic approaches demonstrate that MDA-9 regulates pEGFR and pBCL2 expression through FAK and pPKC. EGFR signaling inhibits autophagy markers (ATG5, Lamp1, LC3B), helping to maintain protective autophagy, and along with pBCL2 maintain survival of GSCs. In the absence of MDA-9, this protective mechanism is deregulated; EGFR no longer maintains protective autophagy, leading to highly elevated and sustained levels of autophagy and consequently decreased cell survival. In addition, pBCL2 is down-regulated in the absence of MDA-9, leading to cell death in GSCs under conditions of anoikis. Our studies confirm a functional link between MDA-9 expression and protective autophagy in GSCs and show that inhibition of MDA-9 reverses protective autophagy and induces anoikis and cell death in GSCs.


Assuntos
Anoikis/genética , Autofagia/genética , Resistencia a Medicamentos Antineoplásicos/genética , Glioma/metabolismo , Células-Tronco Neoplásicas/metabolismo , Sinteninas/metabolismo , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Glioma/genética , Humanos , Sinteninas/genética , Células Tumorais Cultivadas
16.
Int J Mol Sci ; 22(16)2021 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-34445387

RESUMO

Prostate cancer (PCa) is the leading cause of cancer-associated mortality in men, and new biomarkers are still needed. The expression pattern and protein tissue localization of proteoglycans of the syndecan family (SDC 1-4) and syntenin-1 (SDCBP) were determined in normal and prostatic tumor tissue from two genetically engineered mouse models and human prostate tumors. Studies were validated using SDC 1-4 and SDCBP mRNA levels and patient survival data from The Cancer Genome Atlas and CamCAP databases. RNAseq showed increased expression of Sdc1 in Pb-Cre4/Ptenf/f mouse Pca and upregulation of Sdc3 expression and downregulation of Sdc2 and Sdc4 when compared to the normal prostatic tissue in Pb-Cre4/Trp53f/f-;Rb1f/f mouse tumors. These changes were confirmed by immunohistochemistry. In human PCa, SDC 1-4 and SDCBP immunostaining showed variable localization. Furthermore, Kaplan-Meier analysis showed that patients expressing SDC3 had shorter prostate-specific survival than those without SDC3 expression (log-rank test, p = 0.0047). Analysis of the MSKCC-derived expression showed that SDC1 and SDC3 overexpression is predictive of decreased biochemical recurrence-free survival (p = 0.0099 and p = 0.045, respectively), and SDC4 overexpression is predictive of increased biochemical recurrence-free survival (p = 0.035). SDC4 overexpression was associated with a better prognosis, while SDC1 and SDC3 were associated with more aggressive tumors and a worse prognosis.


Assuntos
Perfilação da Expressão Gênica/métodos , Neoplasias da Próstata/patologia , Sindecana-1/genética , Sindecana-3/genética , Sindecana-4/genética , Idoso , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Regulação Neoplásica da Expressão Gênica , Humanos , Masculino , Pessoa de Meia-Idade , Gradação de Tumores , Transplante de Neoplasias , Prognóstico , Neoplasias da Próstata/genética , Neoplasias da Próstata/metabolismo , Análise Serial de Proteínas , Análise de Sequência de RNA , Análise de Sobrevida , Sindecana-1/metabolismo , Sindecana-3/metabolismo , Sindecana-4/metabolismo , Sinteninas/genética , Sinteninas/metabolismo
17.
Br J Cancer ; 123(6): 955-964, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32595209

RESUMO

BACKGROUND: The protein syntenin-1 is expressed by a variety of cell types, and is upregulated in various malignancies, including melanoma, breast cancer and glioma. Although the mechanism by which elevated syntenin-1 expression contributes to cancer has been described, the exact pathway has not been elucidated. METHODS: To investigate the involvement of syntenin-1 in colorectal cancer (CRC), we performed immunohistochemical analysis of 139 CRC surgical specimens. We also examined syntenin-1 knockdown in CRC cell lines. RESULTS: High syntenin-1 expression was associated with less differentiated histologic grade and poor prognosis, and was an independent prognostic indicator in CRC. Syntenin-1 knockdown in CRC cells reduced the presence of cancer stem cells (CSCs), oxaliplatin chemoresistance and migration. DNA microarray analysis and quantitative real-time polymerase chain reaction showed decreased prostaglandin E2 receptor 2 (PTGER2) expression in syntenin-1-knockdown cells. PTGER2 knockdown in CRC cells yielded the same phenotype as syntenin-1 knockdown. Celecoxib, which has anti-inflammatory effects by targeting cyclooxygenase-2, reduced CSCs and decreased chemoresistance, while prostaglandin E2 (PGE2) had the opposite effect. CONCLUSIONS: Our findings suggested that syntenin-1 enhanced CSC expansion, oxaliplatin chemoresistance and migration capability through regulation of PTGER2 expression. Syntenin-1 may be a promising new prognostic factor and target for anti-cancer therapies.


Assuntos
Neoplasias Colorretais/patologia , Células-Tronco Neoplásicas/patologia , Oxaliplatina/farmacologia , Receptores de Prostaglandina E/fisiologia , Sinteninas/fisiologia , Idoso , Linhagem Celular Tumoral , Movimento Celular , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/mortalidade , Resistencia a Medicamentos Antineoplásicos , Feminino , Células HEK293 , Humanos , Masculino , Pessoa de Meia-Idade , Prognóstico
18.
Anal Chem ; 92(20): 13647-13651, 2020 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-32945162

RESUMO

The egress of α-synuclein in neuronally derived exosomes predates the clinical presentation of Parkinson's disease (PD), offering a means of developing a predictive or prognostic test. Here, we report the reagentless impedimetric assay of two internal exosome markers (α-synuclein and syntenin-1) from neuronal exosomes. Exosomes were efficiently extracted from patient sera using anti-L1CAM conjugated zwitterionic polymer-modified magnetic beads prior to lysis and analyzed by electrochemical impedance spectroscopy. The quantification of α-synuclein level across 40 clinical samples resolved statistically significant differences between PD patients and healthy controls (HC).


Assuntos
Biomarcadores/análise , Espectroscopia Dielétrica/métodos , Exossomos/metabolismo , Doença de Parkinson/diagnóstico , alfa-Sinucleína/análise , Anticorpos Imobilizados/química , Anticorpos Imobilizados/imunologia , Biomarcadores/sangue , Humanos , Limite de Detecção , Magnetismo , Molécula L1 de Adesão de Célula Nervosa/química , Molécula L1 de Adesão de Célula Nervosa/imunologia , Doença de Parkinson/metabolismo , Polímeros/química , Sinteninas/análise , alfa-Sinucleína/sangue
19.
BMC Cancer ; 20(1): 159, 2020 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-32106836

RESUMO

BACKGROUND: Lung cancer is the major malignant tumour. The present study was conducted to determine the expression level of syntenin in lung cancer tissues and serum from lung cancer patients and to explore its clinical significance. METHODS: Syntenin expression levels were determined in paraffin-embedded lung cancer tissue specimens (n = 191) using immunohistochemistry. The mRNA expressions of syntenin in fresh lung cancer tissues and the paracancerous tissues were examined by RT-qPCR (n = 25). Syntenin and VEGF expression levels were measured in serum from patients with lung cancer (n = 60) and control subjects (n = 30) using ELISA. The associations between syntenin and the clinicopathological features or prognosis in 191 patients with lung cancer were analysed. The correlation between the syntenin and VEGF levels in serum from 60 lung cancer patients was analysed. RESULTS: The expression levels of syntenin were significantly higher in lung cancer tissues than in paracancerous tissues based on immunohistochemistry and RT-qPCR, and elevated syntenin expression was significantly associated with tumour size (P = 0.002), TNM stage (P = 0.020), tumour distant metastasis (P = 0.033), overall survival (OS) (P = 0.002) and progression-free survival (PFS) (P = 0.001). Multivariate analysis revealed that increased expression of syntenin was an independent risk factor for OS (P = 0.006) and PFS (P < 0.001) in lung cancer patients. The expression levels of syntenin and VEGF in serum from lung cancer patients were higher than those from control subjects (P < 0.001, P < 0.001, respectively), and their expression levels were positively correlated (r = 0.49, P < 0.001). CONCLUSIONS: Syntenin expression is upregulated in lung cancer patients, and its serum expression level is positively correlated with VEGF. Moreover, syntenin overexpression was correlated with poor prognosis in patients with lung cancer.


Assuntos
Neoplasias Pulmonares/patologia , Sinteninas/genética , Sinteninas/metabolismo , Regulação para Cima , Fator A de Crescimento do Endotélio Vascular/sangue , Adulto , Idoso , Idoso de 80 Anos ou mais , Estudos de Casos e Controles , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Metástase Linfática , Masculino , Pessoa de Meia-Idade , Estadiamento de Neoplasias , Prognóstico , Análise de Sobrevida , Sinteninas/sangue , Adulto Jovem
20.
Anticancer Drugs ; 31(2): 131-140, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31850945

RESUMO

MiR-361-5p, a tumor-related microRNA, has been reported to be implicated in the tumorigenesis and progression of diverse types of human malignancies; however, its role in gastric carcinoma remains unclear. This study aimed to explore the biological role of miR-361-5p in gastric carcinoma and clarify the potential mechanisms involved. In the present study, miR-361-5p was found to be significantly downregulated in both gastric carcinoma tissues and cell lines. Functional studies demonstrated that enhanced expression of miR-361-5p suppressed gastric carcinoma cell proliferation in vitro, inhibited tumor growth in vivo, and induced gastric carcinoma cell apoptosis. Moreover, the tumor-suppressing effects of miR-361-5p in gastric carcinoma were abrogated by the miR-361-5p inhibitor treatment. Notably, syndecan-binding protein was downregulated by miR-361-5p via direct binding to its 3' untranslated region in gastric carcinoma cells. Furthermore, syndecan-binding protein expression was discovered to be markedly upregulated and inversely correlated with miR-361-5p expression in gastric carcinoma tissues. Mechanistic studies revealed that restoring the expression of syndecan-binding protein alleviated miR-361-5p-induced inhibitory effects on proliferation of gastric carcinoma cells. Taken together, these findings suggest that miR-361-5p functions as a tumor suppressor in gastric carcinoma by directly targeting syndecan-binding protein and that miR-361-5p might be a novel therapeutic target for gastric carcinoma.


Assuntos
Biomarcadores Tumorais/metabolismo , Regulação Neoplásica da Expressão Gênica , MicroRNAs/genética , Neoplasias Gástricas/patologia , Animais , Apoptose , Biomarcadores Tumorais/genética , Proliferação de Células , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Transdução de Sinais , Neoplasias Gástricas/genética , Neoplasias Gástricas/metabolismo , Sinteninas/genética , Sinteninas/metabolismo , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA