RESUMO
BACKGROUND: Extranodal natural killer T-cell lymphoma (NKTCL; nasal type) is an aggressive malignancy with a particularly high prevalence in Asian and Latin American populations. Epstein-Barr virus infection has a role in the pathogenesis of NKTCL, and HLA-DPB1 variants are risk factors for the disease. We aimed to identify additional novel genetic variants affecting risk of NKTCL. METHODS: We did a genome-wide association study of NKTCL in multiple populations from east Asia. We recruited a discovery cohort of 700 cases with NKTCL and 7752 controls without NKTCL of Han Chinese ancestry from 19 centres in southern, central, and northern regions of China, and four independent replication samples including 717 cases and 12â650 controls. Three of these independent samples (451 cases and 5301 controls) were from eight centres in the same regions of southern, central, and northern China, and the fourth (266 cases and 7349 controls) was from 11 centres in Hong Kong, Taiwan, Singapore, and South Korea. All cases had primary NKTCL that was confirmed histopathologically, and matching with controls was based on geographical region and self-reported ancestry. Logistic regression analysis was done independently by geographical regions, followed by fixed-effect meta-analyses, to identify susceptibility loci. Bioinformatic approaches, including expression quantitative trait loci, binding motif and transcriptome analyses, and biological experiments were done to fine-map and explore the functional relevance of genome-wide association loci to the development of NKTCL. FINDINGS: Genetic data were gathered between Jan 1, 2008, and Jan 23, 2019. Meta-analysis of all samples (a total of 1417 cases and 20â402 controls) identified two novel loci significantly associated with NKTCL: IL18RAP on 2q12.1 (rs13015714; p=2·83â×â10-16; odds ratio 1·39 [95% CI 1·28-1·50]) and HLA-DRB1 on 6p21.3 (rs9271588; 9·35â×â10-26 1·53 [1·41-1·65]). Fine-mapping and experimental analyses showed that rs1420106 at the promoter of IL18RAP was highly correlated with rs13015714, and the rs1420106-A risk variant had an upregulatory effect on IL18RAP expression. Cell growth assays in two NKTCL cell lines (YT and SNK-6 cells) showed that knockdown of IL18RAP inhibited cell proliferation by cell cycle arrest in NKTCL cells. Haplotype association analysis showed that haplotype 47F-67I was associated with reduced risk of NKTCL, whereas 47Y-67L was associated with increased risk of NKTCL. These two positions are component parts of the peptide-binding pocket 7 (P7) of the HLA-DR heterodimer, suggesting that these alterations might account for the association at HLA-DRB1, independent of the previously reported HLA-DPB1 variants. INTERPRETATION: Our findings provide new insights into the development of NKTCL by showing the importance of inflammation and immune regulation through the IL18-IL18RAP axis and antigen presentation involving HLA-DRB1, which might help to identify potential therapeutic targets. Taken in combination with additional genetic and other risk factors, our results could potentially be used to stratify people at high risk of NKTCL for targeted prevention. FUNDING: Guangdong Innovative and Entrepreneurial Research Team Program, National Natural Science Foundation of China, National Program for Support of Top-Notch Young Professionals, Chang Jiang Scholars Program, Singapore Ministry of Health's National Medical Research Council, Tanoto Foundation, National Research Foundation Singapore, Chang Gung Memorial Hospital, Recruitment Program for Young Professionals of China, First Affiliated Hospital and Army Medical University, US National Institutes of Health, and US National Cancer Institute.
Assuntos
Biomarcadores Tumorais/genética , Proliferação de Células , Subunidade beta de Receptor de Interleucina-18/genética , Linfoma Extranodal de Células T-NK/genética , Células T Matadoras Naturais/patologia , Ásia , Biomarcadores Tumorais/metabolismo , Estudos de Casos e Controles , Linhagem Celular Tumoral , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Humanos , Interleucina-18/metabolismo , Subunidade beta de Receptor de Interleucina-18/metabolismo , Desequilíbrio de Ligação , Linfoma Extranodal de Células T-NK/imunologia , Linfoma Extranodal de Células T-NK/metabolismo , Linfoma Extranodal de Células T-NK/patologia , Células T Matadoras Naturais/imunologia , Células T Matadoras Naturais/metabolismo , Fenótipo , Prognóstico , Locos de Características Quantitativas , Medição de Risco , Fatores de Risco , Transdução de Sinais , TranscriptomaRESUMO
The polarization of CD4+ T cells into distinct T helper cell lineages is essential for protective immunity against infection, but aberrant T cell polarization can cause autoimmunity. The transcription factor T-bet (TBX21) specifies the Th1 lineage and represses alternative T cell fates. Genome-wide association studies have identified single nucleotide polymorphisms (SNPs) that may be causative for autoimmune diseases. The majority of these polymorphisms are located within non-coding distal regulatory elements. It is considered that these genetic variants contribute to disease by altering the binding of regulatory proteins and thus gene expression, but whether these variants alter the binding of lineage-specifying transcription factors has not been determined. Here, we show that SNPs associated with the mucosal inflammatory diseases Crohn's disease, ulcerative colitis (UC) and celiac disease, but not rheumatoid arthritis or psoriasis, are enriched at T-bet binding sites. Furthermore, we identify disease-associated variants that alter T-bet binding in vitro and in vivo. ChIP-seq for T-bet in individuals heterozygous for the celiac disease-associated SNPs rs1465321 and rs2058622 and the IBD-associated SNPs rs1551398 and rs1551399, reveals decreased binding to the minor disease-associated alleles. Furthermore, we show that rs1465321 is an expression quantitative trait locus (eQTL) for the neighboring gene IL18RAP, with decreased T-bet binding associated with decreased expression of this gene. These results suggest that genetic polymorphisms may predispose individuals to mucosal autoimmune disease through alterations in T-bet binding. Other disease-associated variants may similarly act by modulating the binding of lineage-specifying transcription factors in a tissue-selective and disease-specific manner.
Assuntos
Doença Celíaca/genética , Colite Ulcerativa/genética , Doença de Crohn/genética , Predisposição Genética para Doença/genética , Polimorfismo de Nucleotídeo Único , Proteínas com Domínio T/genética , Animais , Sítios de Ligação/genética , Western Blotting , Linfócitos T CD4-Positivos/metabolismo , Doença Celíaca/metabolismo , Células Cultivadas , Colite Ulcerativa/metabolismo , Doença de Crohn/metabolismo , Expressão Gênica , Estudo de Associação Genômica Ampla/métodos , Humanos , Subunidade beta de Receptor de Interleucina-18/genética , Subunidade beta de Receptor de Interleucina-18/metabolismo , Camundongos Knockout , Ligação Proteica/genética , Sequências Reguladoras de Ácido Nucleico/genética , Proteínas com Domínio T/metabolismo , Células Th1/metabolismoRESUMO
Varicocele is one of causes of the declined sperm quality and low sperm production, which can lead to infertility in males. There are several experimental and epidemiological findings which support the idea that inflammatory mechanisms play an essential role in varicocele pathogenesis. Besides, in this pathological state, interleukin-37 (IL-37) as an anti-inflammatory cytokine is able to bind interleukin-18-binding protein (IL-18BP), and subsequently binds IL-18 receptor ß, inhibiting the pro-inflammatory activity of IL-18. To explore the interaction between IL-37 and IL-18 in infertility, we measured the amount of these cytokines in the seminal fluid of infertile men affected by varicocele. The seminal plasma levels of IL-37 and IL-18 were measured in 75 infertile men with varicocele and 75 healthy fertile controls (age range, 30-48 years) using enzyme-linked immunosorbent assay. The seminal levels of IL-37 and IL-18 were significantly increased in infertile men with varicocele when compared to fertile controls (p < .0001). Because of the essential role(s) of cytokines in inflammatory response of cell systems, it could be possible that sperm motility is reduced following increased IL-18, activated neutrophils and reactive oxygen species in semen of infertile patients with varicocele. Moreover, the results of this study indicated that interaction between IL-37 and IL-18Rß can lead to reduced inflammatory responses. It seems that IL-37 might be a potential biomarker and therapeutic target for male infertility.
Assuntos
Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Subunidade beta de Receptor de Interleucina-18/metabolismo , Interleucina-18/metabolismo , Interleucina-1/metabolismo , Sêmen/metabolismo , Varicocele/metabolismo , Adulto , Humanos , Inflamação/metabolismo , Masculino , Pessoa de Meia-Idade , Análise do Sêmen , Contagem de Espermatozoides , Motilidade dos EspermatozoidesRESUMO
The noncoding genome is substantially larger than the protein-coding genome but has been largely unexplored by genetic association studies. Here, we performed region-based rare variant association analysis of >25,000 variants in untranslated regions of 6,139 amyotrophic lateral sclerosis (ALS) whole genomes and the whole genomes of 70,403 non-ALS controls. We identified interleukin-18 receptor accessory protein (IL18RAP) 3' untranslated region (3'UTR) variants as significantly enriched in non-ALS genomes and associated with a fivefold reduced risk of developing ALS, and this was replicated in an independent cohort. These variants in the IL18RAP 3'UTR reduce mRNA stability and the binding of double-stranded RNA (dsRNA)-binding proteins. Finally, the variants of the IL18RAP 3'UTR confer a survival advantage for motor neurons because they dampen neurotoxicity of human induced pluripotent stem cell (iPSC)-derived microglia bearing an ALS-associated expansion in C9orf72, and this depends on NF-κB signaling. This study reveals genetic variants that protect against ALS by reducing neuroinflammation and emphasizes the importance of noncoding genetic association studies.
Assuntos
Esclerose Lateral Amiotrófica , Células-Tronco Pluripotentes Induzidas , Subunidade beta de Receptor de Interleucina-18/genética , Regiões 3' não Traduzidas/genética , Esclerose Lateral Amiotrófica/genética , Esclerose Lateral Amiotrófica/metabolismo , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Subunidade beta de Receptor de Interleucina-18/metabolismo , Neurônios Motores/metabolismoRESUMO
Interleukin (IL)-18 is a pro-inflammatory cytokine that is proposed to be involved in physiological as well as pathological conditions in the adult brain. IL-18 acts through a heterodimer receptor comprised of a subunit alpha (IL-18Rα) required for binding, and a subunit beta (IL-18Rß) necessary for activation of signal transduction. We recently demonstrated that the canonical alpha binding chain, and its putative decoy isoform, are expressed in the mouse central nervous system (CNS) suggesting that IL-18 may act on the brain by directly binding its receptor. Considering that the co-expression of the beta chain seems to be required to generate a functional receptor and, a short variant of this chain has been described in rat and human brain, in this study we have extended our investigation to IL-18Rß in mouse. Using a multi-methodological approach we found that: (1) a short splice variant of IL-18Rß was expressed in the CNS even if at lower levels compared to the full-length IL-18Rß variants, (2) the canonical IL-18Rß is expressed in the CNS particularly in areas and nuclei belonging to the limbic system as previously observed for IL-18Rα and finally (3) we have also demonstrated that both IL-18Rß isoforms are up-regulated in different brain areas three hours after a single lipopolysaccharide (LPS) injection suggesting that IL-18Rß in the CNS might be involved in mediating the endocrine and behavioral effects of LPS. Our data highlight the considerable complexity of the IL-18 regulation activity in the mouse brain and further support an important central role for IL-18.
Assuntos
Encéfalo/efeitos dos fármacos , Subunidade beta de Receptor de Interleucina-18/metabolismo , Lipopolissacarídeos/farmacologia , Animais , Encéfalo/imunologia , Encéfalo/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Hibridização In Situ , Subunidade beta de Receptor de Interleucina-18/genética , Lipopolissacarídeos/imunologia , Masculino , Camundongos , Isoformas de Proteínas/genética , Isoformas de Proteínas/imunologia , Isoformas de Proteínas/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/imunologia , RNA Mensageiro/metabolismoRESUMO
The multifunctional cytokine interleukin-18 (IL-18) is an important mediator in intestinal inflammatory processes. The aim of this study was to evaluate the constitutive expression of IL-18 and its receptors (IL-18Ralpha and IL-18Rbeta) in intestinal epithelial cells (IEC) stimulated by tumor necrosis factor-alpha (TNF-alpha) and interferon-gamma (IFN-gamma). In addition, cellular proliferation and evaluation of brush border enzymes as differentiation markers were studied. Nontransformed rat intestinal epithelial IEC-6 cells were grown on an extracellular matrix (ECM) in medium with or without TNF-alpha, IFN-gamma, or a combination of both. Gene expression of IL-18, its receptors and apoptotic markers was evaluated using real-time PCR. Expression of IL-18Ralpha protein was demonstrated by flow cytometry and Western blot. Enzymatic activities of brush border enzymes and caspase-1 were determined. The constitutive expression of IL-18, IL-18Ralpha and IL-18Rbeta mRNAs and proteins were detected in IEC-6 cells. The biologically active form of IL-18 was released in response to TNF-alpha and IFN-gamma treatment. Exogenous IL-18 had no effect on cellular proliferation, brush border enzyme activities, and gene expression of apoptotic markers. However, the addition of IL-18 stimulated production and release of the chemokine IL-8. These data suggest that IEC-6 cells may be not only a source of IL-18 but also a target for its action.
Assuntos
Diferenciação Celular/efeitos dos fármacos , Células Epiteliais/citologia , Interferon gama/farmacologia , Subunidade alfa de Receptor de Interleucina-18/genética , Subunidade beta de Receptor de Interleucina-18/genética , Interleucina-18/genética , Fator de Necrose Tumoral alfa/farmacologia , Animais , Apoptose/efeitos dos fármacos , Biomarcadores/metabolismo , Caspase 1/metabolismo , Contagem de Células , Linhagem Celular , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Quimiocina CCL2/metabolismo , Meios de Cultura , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/enzimologia , Células Epiteliais/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Interleucina-18/metabolismo , Subunidade alfa de Receptor de Interleucina-18/metabolismo , Subunidade beta de Receptor de Interleucina-18/metabolismo , Intestinos/citologia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ratos , Reação em Cadeia da Polimerase Via Transcriptase ReversaRESUMO
Background: Systemic juvenile idiopathic arthritis (SJIA) is a chronic childhood arthropathy with features of autoinflammation. Early inflammatory SJIA is associated with expansion and activation of neutrophils with a sepsis-like phenotype, but neutrophil phenotypes present in longstanding and clinically inactive disease (CID) are unknown. The objective of this study was to examine activated neutrophil subsets, S100 alarmin release, and gene expression signatures in children with a spectrum of SJIA disease activity. Methods: Highly-purified neutrophils were isolated using a two-step procedure of density-gradient centrifugation followed by magnetic-bead based negative selection prior to flow cytometry or cell culture to quantify S100 protein release. Whole transcriptome gene expression profiles were compared in neutrophils from children with both active SJIA and CID. Results: Patients with SJIA and active systemic features demonstrated a higher proportion of CD16+CD62Llo neutrophil population compared to controls. This neutrophil subset was not seen in patients with CID or patients with active arthritis not exhibiting systemic features. Using imaging flow cytometry, CD16+CD62Llo neutrophils from patients with active SJIA and features of macrophage activation syndrome (MAS) had increased nuclear hypersegmentation compared to CD16+CD62L+ neutrophils. Serum levels of S100A8/A9 and S100A12 were strongly correlated with peripheral blood neutrophil counts. Neutrophils from active SJIA patients did not show enhanced resting S100 protein release; however, regardless of disease activity, neutrophils from SJIA patients did show enhanced S100A8/A9 release upon PMA stimulation compared to control neutrophils. Furthermore, whole transcriptome analysis of highly purified neutrophils from children with active SJIA identified 214 differentially expressed genes (DEG) compared to neutrophils from healthy controls. The most significantly upregulated gene pathway was Immune System Process, including AIM2, IL18RAP, and NLRC4. Interestingly, this gene set showed intermediate levels of expression in neutrophils from patients with long-standing CID yet persistent serum IL-18 elevation. Indeed, all patient samples regardless of disease activity demonstrated elevated inflammatory gene expression, including inflammasome components and S100A8. Conclusion: We identify features of neutrophil activation in SJIA patients with both active disease and CID, including a proinflammatory gene expression signature, reflecting persistent innate immune activation. Taken together, these studies expand understanding of neutrophil function in chronic autoinflammatory disorders such as SJIA.
Assuntos
Artrite Juvenil/imunologia , Calgranulina A/imunologia , Inflamassomos/imunologia , Síndrome de Ativação Macrofágica/imunologia , Neutrófilos/imunologia , Adolescente , Artrite Juvenil/sangue , Proteínas Adaptadoras de Sinalização CARD/imunologia , Proteínas Adaptadoras de Sinalização CARD/metabolismo , Proteínas de Ligação ao Cálcio/imunologia , Proteínas de Ligação ao Cálcio/metabolismo , Calgranulina A/metabolismo , Células Cultivadas , Criança , Proteínas de Ligação a DNA/imunologia , Proteínas de Ligação a DNA/metabolismo , Feminino , Perfilação da Expressão Gênica , Humanos , Inflamassomos/metabolismo , Subunidade beta de Receptor de Interleucina-18/imunologia , Subunidade beta de Receptor de Interleucina-18/metabolismo , Síndrome de Ativação Macrofágica/sangue , Masculino , Ativação de Neutrófilo/imunologia , Neutrófilos/metabolismo , Cultura Primária de Células , Regulação para Cima/imunologiaRESUMO
MyD88, a Toll/interleukin-1 receptor homology (TIR) domain-containing adaptor protein, mediates signals from the Toll-like receptors (TLR) or IL-1/IL-18 receptors to downstream kinases. In MyD88-dependent TLR4 signaling, the function of MyD88 is enhanced by another TIR domain-containing adaptor, Mal/TIRAP, which brings MyD88 to the plasma membrane and promotes its interaction with the cytosolic region of TLR4. Hence, Mal is recognized as the "sorting adaptor" for MyD88. In this study, a direct interaction between MyD88-TIR and another membrane-sorting adaptor, TRAM/TICAM-2, was demonstrated in vitro. Cell-based assays including RNA interference experiments and TRAM deficient mice revealed that the interplay between MyD88 and TRAM in cells is important in mediating IL-18 signal transduction. Live cell imaging further demonstrated the co-localized accumulation of MyD88 and TRAM in the membrane regions in HEK293 cells. These findings suggest that TRAM serves as the sorting adaptor for MyD88 in IL-18 signaling, which then facilitates the signal transduction. The binding sites for TRAM are located in the TIR domain of MyD88 and actually overlap with the binding sites for Mal. MyD88, the multifunctional signaling adaptor that works together with most of the TLR members and with the IL-1/IL-18 receptors, can interact with two distinct sorting adaptors, TRAM and Mal, in a conserved manner in a distinct context.
Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Subunidade beta de Receptor de Interleucina-18/metabolismo , Glicoproteínas de Membrana/metabolismo , Fator 88 de Diferenciação Mieloide/metabolismo , Receptores de Interleucina-1/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/química , Proteínas Adaptadoras de Transdução de Sinal/genética , Animais , Sítios de Ligação/genética , Células HEK293 , Humanos , Imunoprecipitação , Interferon gama/metabolismo , Interleucina-12/farmacologia , Interleucina-18/farmacologia , Subunidade beta de Receptor de Interleucina-18/genética , Glicoproteínas de Membrana/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Microscopia Confocal , Modelos Moleculares , Mutação , Fator 88 de Diferenciação Mieloide/genética , Ligação Proteica , Estrutura Terciária de Proteína , Interferência de RNA , Receptores de Interleucina-1/genética , Receptores de Interleucina-18/metabolismo , Transdução de Sinais , Células Th1/efeitos dos fármacos , Células Th1/metabolismo , Receptor 4 Toll-Like/metabolismoRESUMO
The cytokine IL-18 acts on the CNS both in physiological and pathological conditions. Its action occurs through the heterodimeric receptor IL-18Ralpha\beta. To better understand IL-18 central effects, we investigated in the mouse brain the distribution of two IL-18Ralpha transcripts, a full length and an isoform lacking the intracellular domain hypothesized to be a decoy receptor. Both isoforms were expressed in neurons throughout the brain primarily with overlapping distribution but also with some unique pattern. These data suggest that IL-18 may modulate neuronal functions and that its action may be regulated through expression of a decoy receptor.
Assuntos
Encéfalo/metabolismo , Subunidade alfa de Receptor de Interleucina-18/metabolismo , Interleucina-18/metabolismo , Processamento Alternativo , Animais , Encéfalo/imunologia , Cerebelo/metabolismo , Córtex Cerebral/metabolismo , Éxons , Hipocampo/metabolismo , Hipotálamo/metabolismo , Imuno-Histoquímica , Hibridização In Situ , Interleucina-18/imunologia , Subunidade alfa de Receptor de Interleucina-18/imunologia , Subunidade beta de Receptor de Interleucina-18/metabolismo , Íntrons , Camundongos , Camundongos Endogâmicos C57BL , Isoformas de Proteínas , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transcrição GênicaRESUMO
OBJECTIVE: Systemic-onset juvenile idiopathic arthritis (JIA) is an autoimmune disease characterized by arthritis and systemic features. Its pathogenesis is still largely unknown. It is characterized immunologically by natural killer (NK) cell dysfunction and cytokine signatures that predominantly feature interleukin-1 (IL-1), IL-6, and IL-18. Since IL-18 can drive NK cell function, we examined how the high plasma levels of this cytokine are related to the documented NK cell failure in these patients. METHODS: The phenotype and function of NK cells from 10 healthy control subjects, 15 patients with polyarticular JIA, and 15 patients with systemic-onset JIA were characterized by staining and functional assays in vitro. IL-18 ligand binding was visualized by fluorescence microscopy. Phosphorylation of several MAP kinases and the IL-18 receptor beta (IL-18Rbeta) were visualized by Western blotting. RESULTS: IL-18 from the plasma of systemic-onset JIA patients stimulated the activation of NK cells from healthy controls and bound its cognate receptor. However, NK cells from systemic-onset JIA patients failed to up-regulate cell-mediated killing molecules, such as perforin and interferon-gamma, after IL-18 stimulation. Furthermore, treatment with IL-18 did not induce the phosphorylation of receptor-activated MAP kinases in NK cells. Alternate activation of NK cells by IL-12 induced NK cell cytotoxicity. We observed no additive effect of IL-18 in combination with IL-12 in systemic-onset JIA patients. Immunoprecipitation of IL-18Rbeta showed that NK cells from systemic-onset JIA could not phosphorylate this receptor after IL-18 stimulation. CONCLUSION: The mechanism of the impaired NK cell function in systemic-onset JIA involves a defect in IL-18Rbeta phosphorylation. This observation has major implications for the understanding and, ultimately, the treatment of systemic-onset JIA.
Assuntos
Artrite Juvenil/metabolismo , Artrite Juvenil/patologia , Subunidade beta de Receptor de Interleucina-18/metabolismo , Células Matadoras Naturais/metabolismo , Adolescente , Artrite Juvenil/classificação , Estudos de Casos e Controles , Células Cultivadas , Criança , Pré-Escolar , Feminino , Humanos , Lactente , Interferon gama/metabolismo , Interleucina-18/sangue , Interleucina-18/farmacologia , Células Matadoras Naturais/efeitos dos fármacos , Células Matadoras Naturais/patologia , Masculino , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , Perforina/metabolismo , Fosforilação , Transdução de Sinais/fisiologiaRESUMO
Interleukin-18 (IL-18) is a proinflammatory cytokine involved in chronic inflammation, autoimmune diseases, and a variety of cancers, and is expressed in mouse uteri. Our previous study suggested that IL-18 acts as a paracrine factor, regulating endometrial function. To elucidate the physiological roles of IL-18 in the mouse endometrium, the expression of the IL-18 receptor (IL-18R) alpha subunit was analyzed. IL-18Ralpha mRNA was expressed in several mouse organs in addition to the endometrium. In situ hybridization analysis using a biotin-labeled mouse IL-18Ralpha riboprobe demonstrated that IL-18Ralpha mRNA expression was detected in glandular epithelial cells, stromal cells around uterine glands, and myometrial cells in the mouse uterus, suggesting that these cells are targets for IL-18. The uterine IL-18Ralpha mRNA expression level changed with the estrous cycle. The uterine IL-18Ralpha mRNA levels of estrous mice were higher than those of diestrous mice. In addition, the IL-18Ralpha mRNA levels in uteri at 3 and 14 days after ovariectomy were higher than those at diestrus and decreased following treatment with estradiol-17beta or progesterone. These findings suggest that IL-18Ralpha gene expression is regulated by estrogen and progesterone and that the uterine IL-18 system is involved in the regulation of uterine functions in a paracrine manner.