Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
1.
Environ Microbiol ; 26(9): e16691, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39206712

RESUMO

Elemental sulfur (S8 0)-oxidising Sulfolobales (Archaea) dominate high-temperature acidic hot springs (>80°C, pH <4). However, genomic analyses of S8 0-oxidising members of the Sulfolobales reveal a patchy distribution of genes encoding sulfur oxygenase reductase (SOR), an S8 0 disproportionating enzyme attributed to S8 0 oxidation. Here, we report the S8 0-dependent growth of two Sulfolobales strains previously isolated from acidic hot springs in Yellowstone National Park, one of which associated with bulk S8 0 during growth and one that did not. The genomes of each strain encoded different sulfur metabolism enzymes, with only one encoding SOR. Dialysis membrane experiments showed that direct contact is not required for S8 0 oxidation in the SOR-encoding strain. This is attributed to the generation of hydrogen sulfide (H2S) from S8 0 disproportionation that can diffuse out of the cell to solubilise bulk S8 0 to form soluble polysulfides (Sx 2-) and/or S8 0 nanoparticles that readily diffuse across dialysis membranes. The Sulfolobales strain lacking SOR required direct contact to oxidise S8 0, which could be overcome by the addition of H2S. High concentrations of S8 0 inhibited the growth of both strains. These results implicate alternative strategies to acquire and metabolise sulfur in Sulfolobales and have implications for their distribution and ecology in their hot spring habitats.


Assuntos
Fontes Termais , Oxirredução , Enxofre , Enxofre/metabolismo , Fontes Termais/microbiologia , Sulfeto de Hidrogênio/metabolismo , Sulfetos/metabolismo , Sulfolobaceae/metabolismo , Sulfolobaceae/genética
2.
Extremophiles ; 28(3): 36, 2024 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-39060419

RESUMO

The heterotrophic cultivation of extremophilic archaea still heavily relies on complex media. However, complex media are associated with unknown composition, high batch-to-batch variability, potential inhibiting and interfering components, as well as regulatory challenges, hampering advancements of extremophilic archaea in genetic engineering and bioprocessing. For Metallosphaera sedula, a widely studied organism for biomining and bioremediation and a potential production host for archaeal ether lipids, efforts to find defined cultivation conditions have still been unsuccessful. This study describes the development of a novel chemically defined growth medium for M. sedula. Initial experiments with commonly used complex casein-derived media sources deciphered Casamino Acids as the most suitable foundation for further development. The imitation of the amino acid composition of Casamino Acids in basal Brock medium delivered the first chemically defined medium. We could further simplify the medium to 5 amino acids based on the respective specific substrate uptake rates. This first defined cultivation medium for M. sedula allows advanced genetic engineering and more controlled bioprocess development approaches for this highly interesting archaeon.


Assuntos
Meios de Cultura , Sulfolobaceae/metabolismo , Sulfolobaceae/crescimento & desenvolvimento , Sulfolobaceae/genética , Processos Heterotróficos
3.
Biochem Biophys Res Commun ; 509(3): 722-727, 2019 02 12.
Artigo em Inglês | MEDLINE | ID: mdl-30611567

RESUMO

Metallosphaera sedula is a thermoacidophilic archaeon that has carbon fixation ability using the 3-hydroxypropionate/4-hydroxybutyrate(3-HP/4-HB) cycle, and has an incomplete TCA cycle to produce necessary biosynthetic precursors. The citrate synthase from M. sedula (MsCS) is an enzyme involved in the first step of the incomplete TCA cycle, catalyzing the conversion of oxaloacetate and acetyl-CoA into citrate and coenzyme A. To investigate the molecular mechanism of MsCS, we determined its crystal structure at 1.8 Šresolution. As other known CSs, MsCS functions as a dimer, and each monomer consists of two domains, a large domain and a small domain. We also determined the structure of the complex with acetyl-CoA and revealed the acetyl-CoA binding mode of MsCS. Structural comparison of MsCS with another CS in complex with oxaloacetate enabled us to predict the oxaloacetate binding site. Moreover, we performed inhibitory kinetic analyses of MsCS, and showed that the protein is inhibited by citrate and ATP by competitive and non-competitive inhibition modes, respectively, but not by NADH. Based on these results, we suggest that MsCS belongs to the type-I CS with structural and biochemical properties similar to those of CSs involved in the conventional TCA cycle.


Assuntos
Proteínas Arqueais/química , Citrato (si)-Sintase/química , Sulfolobaceae/enzimologia , Acetilcoenzima A/metabolismo , Proteínas Arqueais/metabolismo , Domínio Catalítico , Citrato (si)-Sintase/metabolismo , Cristalografia por Raios X , Cinética , Modelos Moleculares , Conformação Proteica , Sulfolobaceae/química , Sulfolobaceae/metabolismo
4.
Biochem Biophys Res Commun ; 509(3): 833-838, 2019 02 12.
Artigo em Inglês | MEDLINE | ID: mdl-30638660

RESUMO

Metallosphaera sedula is a thermoacidophilic autotrophic archaeon and known to utilize the 3-hydroxypropionate/4-hydroxybutyrate cycle (3-HP/4-HB cycle) as a carbon fixation pathway. The 3-HP/4-HB cycle in M. sedula is associated with central metabolism, and malate dehydrogenase (MDH) is an enzyme involved in the central metabolism that converts malate to oxaloacetate. To elucidate the enzymatic properties of MDH from M. sedula (MsMDH), we determined the crystal structure of MsMDH as a complex with NAD+ and a ternary complex with malate and NAD+. Based on its complex structures and biochemical experiments, we observed that MsMDH can utilize both NAD+ and NADP+ as a cofactor. In addition, we revealed that MsMDH shows a conformational change at the active site upon substrate binding. Based on the comparison with other MDHs, we revealed that MsMDH was distinguished from general MDHs due to a Lys80 residue, and this difference is likely to influence the unique cofactor specificity of MsMDH.


Assuntos
Proteínas Arqueais/química , Malato Desidrogenase/química , Sulfolobaceae/química , Proteínas Arqueais/metabolismo , Domínio Catalítico , Cristalografia por Raios X , Malato Desidrogenase/metabolismo , Malatos/metabolismo , Modelos Moleculares , Conformação Proteica , Especificidade por Substrato , Sulfolobaceae/enzimologia , Sulfolobaceae/metabolismo
5.
Archaea ; 2019: 3208051, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31178666

RESUMO

Microorganisms are well adapted to their habitat but are partially sensitive to toxic metabolites or abiotic compounds secreted by other organisms or chemically formed under the respective environmental conditions. Thermoacidophiles are challenged by pyroglutamate, a lactam that is spontaneously formed by cyclization of glutamate under aerobic thermoacidophilic conditions. It is known that growth of the thermoacidophilic crenarchaeon Saccharolobus solfataricus (formerly Sulfolobus solfataricus) is completely inhibited by pyroglutamate. In the present study, we investigated the effect of pyroglutamate on the growth of S. solfataricus and the closely related crenarchaeon Sulfolobus acidocaldarius. In contrast to S. solfataricus, S. acidocaldarius was successfully cultivated with pyroglutamate as a sole carbon source. Bioinformatical analyses showed that both members of the Sulfolobaceae have at least one candidate for a 5-oxoprolinase, which catalyses the ATP-dependent conversion of pyroglutamate to glutamate. In S. solfataricus, we observed the intracellular accumulation of pyroglutamate and crude cell extract assays showed a less effective degradation of pyroglutamate. Apparently, S. acidocaldarius seems to be less versatile regarding carbohydrates and prefers peptidolytic growth compared to S. solfataricus. Concludingly, S. acidocaldarius exhibits a more efficient utilization of pyroglutamate and is not inhibited by this compound, making it a better candidate for applications with glutamate-containing media at high temperatures.


Assuntos
Ácido Glutâmico/metabolismo , Ácido Pirrolidonocarboxílico/metabolismo , Sulfolobus acidocaldarius/crescimento & desenvolvimento , Sulfolobus solfataricus/crescimento & desenvolvimento , Meios de Cultura , Piroglutamato Hidrolase/metabolismo , Sulfolobaceae/crescimento & desenvolvimento , Sulfolobaceae/metabolismo , Sulfolobus acidocaldarius/metabolismo , Sulfolobus solfataricus/metabolismo
6.
Appl Environ Microbiol ; 85(5)2019 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-30578261

RESUMO

Certain species from the extremely thermoacidophilic genus Metallosphaera directly oxidize Fe(II) to Fe(III), which in turn catalyzes abiotic solubilization of copper from chalcopyrite to facilitate recovery of this valuable metal. In this process, the redox status of copper does not change as it is mobilized. Metallosphaera species can also catalyze the release of metals from ores with a change in the metal's redox state. For example, Metallosphaera sedula catalyzes the mobilization of uranium from the solid oxide U3O8, concomitant with the generation of soluble U(VI). Here, the mobilization of metals from solid oxides (V2O3, Cu2O, FeO, MnO, CoO, SnO, MoO2, Cr2O3, Ti2O3, and Rh2O3) was examined for M. sedula and M. prunae at 70°C and pH 2.0. Of these oxides, only V and Mo were solubilized, a process accelerated in the presence of FeCl3 However, it was not clear whether the solubilization and oxidation of these metals could be attributed entirely to an Fe-mediated indirect mechanism. Transcriptomic analysis for growth on molybdenum and vanadium oxides revealed transcriptional patterns not previously observed for growth on other energetic substrates (i.e., iron, chalcopyrite, organic compounds, reduced sulfur compounds, and molecular hydrogen). Of particular interest was the upregulation of Msed_1191, which encodes a Rieske cytochrome b6 fusion protein (Rcbf, referred to here as V/MoxA) that was not transcriptomically responsive during iron biooxidation. These results suggest that direct oxidation of V and Mo occurs, in addition to Fe-mediated oxidation, such that both direct and indirect mechanisms are involved in the mobilization of redox-active metals by Metallosphaera species.IMPORTANCE In order to effectively leverage extremely thermoacidophilic archaea for the microbially based solubilization of solid-phase metal substrates (e.g., sulfides and oxides), understanding the mechanisms by which these archaea solubilize metals is important. Physiological analysis of Metallosphaera species growth in the presence of molybdenum and vanadium oxides revealed an indirect mode of metal mobilization, catalyzed by iron cycling. However, since the mobilized metals exist in more than one oxidation state, they could potentially serve directly as energetic substrates. Transcriptomic response to molybdenum and vanadium oxides provided evidence for new biomolecules participating in direct metal biooxidation. The findings expand the knowledge on the physiological versatility of these extremely thermoacidophilic archaea.


Assuntos
Molibdênio/metabolismo , Óxidos/metabolismo , Sulfolobaceae/metabolismo , Vanádio/metabolismo , Proteínas Arqueais/genética , Cobre/metabolismo , Compostos Férricos/metabolismo , Perfilação da Expressão Gênica , Genoma Arqueal , Temperatura Alta , Concentração de Íons de Hidrogênio , Oxirredução , Oxigênio , Sulfolobaceae/genética , Compostos de Enxofre/metabolismo , Transcriptoma , Urânio/metabolismo
7.
PLoS Comput Biol ; 14(9): e1006431, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30260956

RESUMO

Interactions among microbial community members can lead to emergent properties, such as enhanced productivity, stability, and robustness. Iron-oxide mats in acidic (pH 2-4), high-temperature (> 65 °C) springs of Yellowstone National Park contain relatively simple microbial communities and are well-characterized geochemically. Consequently, these communities are excellent model systems for studying the metabolic activity of individual populations and key microbial interactions. The primary goals of the current study were to integrate data collected in situ with in silico calculations across process-scales encompassing enzymatic activity, cellular metabolism, community interactions, and ecosystem biogeochemistry, as well as to predict and quantify the functional limits of autotroph-heterotroph interactions. Metagenomic and transcriptomic data were used to reconstruct carbon and energy metabolisms of an important autotroph (Metallosphaera yellowstonensis) and heterotroph (Geoarchaeum sp. OSPB) from the studied Fe(III)-oxide mat communities. Standard and hybrid elementary flux mode and flux balance analyses of metabolic models predicted cellular- and community-level metabolic acclimations to simulated environmental stresses, respectively. In situ geochemical analyses, including oxygen depth-profiles, Fe(III)-oxide deposition rates, stable carbon isotopes and mat biomass concentrations, were combined with cellular models to explore autotroph-heterotroph interactions important to community structure-function. Integration of metabolic modeling with in situ measurements, including the relative population abundance of autotrophs to heterotrophs, demonstrated that Fe(III)-oxide mat communities operate at their maximum total community growth rate (i.e. sum of autotroph and heterotroph growth rates), as opposed to net community growth rate (i.e. total community growth rate subtracting autotroph consumed by heterotroph), as predicted from the maximum power principle. Integration of multiscale data with ecological theory provides a basis for predicting autotroph-heterotroph interactions and community-level cellular organization.


Assuntos
Compostos Férricos/química , Microbiota , Sulfolobaceae/metabolismo , Processos Autotróficos , Biomassa , Carbono/química , Simulação por Computador , Transporte de Elétrons , Elétrons , Genoma Arqueal , Processos Heterotróficos , Temperatura Alta , Ferro/química , Metagenômica , Oxigênio/química , Filogenia , Sulfetos/química , Transcriptoma
8.
J Ind Microbiol Biotechnol ; 46(8): 1113-1127, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31165968

RESUMO

Extremely thermoacidophilic Crenarchaeota belonging to the order Sulfolobales, such as Metallosphaera sedula, are metabolically versatile and of great relevance in bioleaching. However, the impacts of extreme thermoacidophiles propagated with different energy substrates on subsequent bioleaching of refractory chalcopyrite remain unknown. Transcriptional responses underlying their different bioleaching potentials are still elusive. Here, it was first showed that M. sedula inocula propagated with typical energy substrates have different chalcopyrite bioleaching capabilities. Inoculum propagated heterotrophically with yeast extract was deficient in bioleaching; however, inoculum propagated mixotrophically with chalcopyrite, pyrite or sulfur recovered 79%, 78% and 62% copper, respectively, in 12 days. Compared with heterotrophically propagated inoculum, 937, 859 and 683 differentially expressed genes (DEGs) were identified in inoculum cultured with chalcopyrite, pyrite or sulfur, respectively, including upregulation of genes involved in bioleaching-associated metabolism, e.g., Fe2+ and sulfur oxidation, CO2 fixation. Inoculum propagated with pyrite or sulfur, respectively, shared 480 and 411 DEGs with chalcopyrite-cultured inoculum. Discrepancies on repertories of DEGs that involved in Fe2+ and sulfur oxidation in inocula greatly affected subsequent chalcopyrite bioleaching rates. Novel genes (e.g., Msed_1156, Msed_0549) probably involved in sulfur oxidation were first identified. This study highlights that mixotrophically propagated extreme thermoacidophiles especially with chalcopyrite should be inoculated into chalcopyrite heaps at industrial scale.


Assuntos
Cobre/metabolismo , Sulfolobaceae/metabolismo , Processos Heterotróficos , Ferro/metabolismo , Oxirredução , Sulfetos/metabolismo , Sulfolobaceae/genética , Enxofre/metabolismo
9.
Archaea ; 2018: 5251061, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29692683

RESUMO

Polyphosphates (PolyP) are linear polymers of orthophosphate residues that have been proposed to participate in metal resistance in bacteria and archaea. In addition of having a CopA/CopB copper efflux system, the thermoacidophilic archaeon Metallosphaera sedula contains electron-dense PolyP-like granules and a putative exopolyphosphatase (PPX Msed , Msed_0891) and four presumed pho84-like phosphate transporters (Msed_0846, Msed_0866, Msed_1094, and Msed_1512) encoded in its genome. In the present report, the existence of a possible PolyP-based copper-resistance mechanism in M. sedula DSM 5348T was evaluated. M. sedula DSM 5348T accumulated high levels of phosphorous in the form of granules, and its growth was affected in the presence of 16 mM copper. PolyP levels were highly reduced after the archaeon was subjected to an 8 mM CuSO4 shift. PPX Msed was purified, and the enzyme was found to hydrolyze PolyP in vitro. Essential residues for catalysis of PPX Msed were E111 and E113 as shown by a site-directed mutagenesis of the implied residues. Furthermore, M. sedula ppx, pho84-like, and copTMA genes were upregulated upon copper exposure, as determined by qRT-PCR analysis. The results obtained support the existence of a PolyP-dependent copper-resistance system that may be of great importance in the adaptation of this thermoacidophilic archaeon to its harsh environment.


Assuntos
Hidrolases Anidrido Ácido/metabolismo , Cobre/toxicidade , Resistência Microbiana a Medicamentos , Proteínas de Membrana Transportadoras/metabolismo , Polifosfatos/metabolismo , Sulfolobaceae/efeitos dos fármacos , Sulfolobaceae/enzimologia , Cobre/metabolismo , Grânulos Citoplasmáticos/metabolismo , Perfilação da Expressão Gênica , Mutagênese Sítio-Dirigida , Sulfolobaceae/genética , Sulfolobaceae/metabolismo , Oligoelementos/metabolismo , Oligoelementos/toxicidade
10.
Adv Appl Microbiol ; 104: 135-165, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30143251

RESUMO

Thermophilic and lithoautotrophic archaea such as Metallosphaera sedula occupy acidic, metal-rich environments and are used in biomining processes. Biotechnological approaches could accelerate these processes and improve metal recovery by biomining organisms, but systems for genetic manipulation in these organisms are currently lacking. To gain a better understanding of the interplay between metal resistance, autotrophy, and lithotrophic metabolism, a genetic system was developed for M. sedula and used to evaluate parameters governing the efficiency of copper bioleaching. Additionally, adaptive laboratory evolution was used to select for naturally evolved M. sedula cell lines with desirable phenotypes for biomining, and these adapted cell lines were shown to have increased bioleaching capacity and efficiency. Genomic methods were used to analyze mutations that led to resistance in the experimentally evolved cell lines, while transcriptomics was used to examine changes in stress-inducible gene expression specific to the environmental conditions.


Assuntos
Adaptação Biológica , Cobre/metabolismo , Engenharia Metabólica/métodos , Seleção Genética , Sulfolobaceae/genética , Sulfolobaceae/metabolismo , Biotecnologia/métodos , Sulfolobaceae/crescimento & desenvolvimento
11.
Anal Bioanal Chem ; 410(6): 1725-1733, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29270659

RESUMO

The bioleaching of two different genetic types of chalcopyrite by the moderate thermophile Sulfobacillus thermosulfidooxidans was investigated by leaching behaviors elucidation and their comparative mineralogical assessment. The leaching experiment showed that the skarn-type chalcopyrite (STC) revealed a much faster leaching rate with 33.34% copper extracted finally, while only 23.53% copper was bioleached for the porphyry-type chalcopyrite (PTC). The mineralogical properties were analyzed by XRD, SEM, XPS, and Fermi energy calculation. XRD indicated that the unit cell volume of STC was a little larger than that of PTC. SEM indicated that the surface of STC had more steps and ridges. XPS spectra showed that Cu(I) was the dominant species of copper on the surfaces of the two chalcopyrite samples, and STC had much more copper with lower Cu 2p3/2 binding energy. Additionally, the Fermi energy of STC was much higher than that of PTC. These mineralogical differences were in good agreement with the bioleaching behaviors of chalcopyrite. This study will provide some new information for evaluating the oxidation kinetics of chalcopyrite.


Assuntos
Cobre/análise , Sulfolobaceae/metabolismo , Cobre/metabolismo , Cristalização , Minerais/análise , Minerais/metabolismo , Oxirredução , Sulfolobaceae/química , Difração de Raios X
12.
Environ Microbiol ; 19(7): 2831-2842, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28585353

RESUMO

When abruptly exposed to toxic levels of hexavalent uranium, the extremely thermoacidophilic archaeon Metallosphaera prunae, originally isolated from an abandoned uranium mine, ceased to grow, and concomitantly exhibited heightened levels of cytosolic ribonuclease activity that corresponded to substantial degradation of cellular RNA. The M. prunae transcriptome during 'uranium-shock' implicated VapC toxins as possible causative agents of the observed RNA degradation. Identifiable VapC toxins and PIN-domain proteins encoded in the M. prunae genome were produced and characterized, three of which (VapC4, VapC7, VapC8) substantially degraded M. prunae rRNA in vitro. RNA cleavage specificity for these VapCs mapped to motifs within M. prunae rRNA. Furthermore, based on frequency of cleavage sequences, putative target mRNAs for these VapCs were identified; these were closely associated with translation, transcription, and replication. It is interesting to note that Metallosphaera sedula, a member of the same genus and which has a nearly identical genome sequence but not isolated from a uranium-rich biotope, showed no evidence of dormancy when exposed to this metal. M. prunae utilizes VapC toxins for post-transcriptional regulation under uranium stress to enter a cellular dormant state, thereby providing an adaptive response to what would otherwise be a deleterious environmental perturbation.


Assuntos
Proteínas Arqueais/metabolismo , Toxinas Bacterianas/metabolismo , Regulação Bacteriana da Expressão Gênica/fisiologia , Sulfolobaceae/crescimento & desenvolvimento , Sulfolobaceae/metabolismo , Urânio/metabolismo , Proteínas Arqueais/genética , Toxinas Bacterianas/genética , Estabilidade de RNA/fisiologia , Sulfolobaceae/genética , Transcriptoma
13.
J Ind Microbiol Biotechnol ; 44(12): 1613-1625, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28770421

RESUMO

Adaptive laboratory evolution (ALE) was employed to isolate arsenate and copper cross-resistant strains, from the copper-resistant M. sedula CuR1. The evolved strains, M. sedula ARS50-1 and M. sedula ARS50-2, contained 12 and 13 additional mutations, respectively, relative to M. sedula CuR1. Bioleaching capacity of a defined consortium (consisting of a naturally occurring strain and a genetically engineered copper sensitive strain) was increased by introduction of M. sedula ARS50-2, with 5.31 and 26.29% more copper recovered from enargite at a pulp density (PD) of 1 and 3% (w/v), respectively. M. sedula ARS50-2 arose as the predominant species and modulated the proportions of the other two strains after it had been introduced. Collectively, the higher Cu2+ resistance trait of M. sedula ARS50-2 resulted in a modulated microbial community structure, and consolidating enargite bioleaching especially at elevated PD.


Assuntos
Arseniatos/farmacologia , Cobre/farmacologia , Resistência Microbiana a Medicamentos , Minerais/metabolismo , Sulfolobaceae/efeitos dos fármacos , Sulfolobaceae/metabolismo , Cobre/química , Cobre/isolamento & purificação , Resistência Microbiana a Medicamentos/efeitos dos fármacos , Resistência Microbiana a Medicamentos/genética , Genes Arqueais/genética , Minerais/química , Mutação , Sulfolobaceae/classificação , Sulfolobaceae/genética
14.
Metab Eng ; 38: 446-463, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27771364

RESUMO

The 3-hydroxypropionate/4-hydroxybutyrate (3HP/4HB) cycle fixes CO2 in extremely thermoacidophilic archaea and holds promise for metabolic engineering because of its thermostability and potentially rapid pathway kinetics. A reaction kinetics model was developed to examine the biological and biotechnological attributes of the 3HP/4HB cycle as it operates in Metallosphaera sedula, based on previous information as well as on kinetic parameters determined here for recombinant versions of five of the cycle enzymes (malonyl-CoA/succinyl-CoA reductase, 3-hydroxypropionyl-CoA synthetase, 3-hydroxypropionyl-CoA dehydratase, acryloyl-CoA reductase, and succinic semialdehyde reductase). The model correctly predicted previously observed features of the cycle: the 35-65% split of carbon flux through the acetyl-CoA and succinate branches, the high abundance and relative ratio of acetyl-CoA/propionyl-CoA carboxylase (ACC) and MCR, and the significance of ACC and hydroxybutyryl-CoA synthetase (HBCS) as regulated control points for the cycle. The model was then used to assess metabolic engineering strategies for incorporating CO2 into chemical intermediates and products of biotechnological importance: acetyl-CoA, succinate, and 3-hydroxypropionate.


Assuntos
Dióxido de Carbono/metabolismo , Hidroxibutiratos/metabolismo , Ácido Láctico/análogos & derivados , Análise do Fluxo Metabólico/métodos , Redes e Vias Metabólicas/fisiologia , Modelos Biológicos , Sulfolobaceae/metabolismo , Archaea/metabolismo , Extremófilos/metabolismo , Cinética , Ácido Láctico/metabolismo , Taxa de Depuração Metabólica , Transdução de Sinais/fisiologia
15.
Appl Environ Microbiol ; 82(15): 4613-4627, 2016 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-27208114

RESUMO

UNLABELLED: The extremely thermoacidophilic archaeon Metallosphaera sedula mobilizes metals by novel membrane-associated oxidase clusters and, consequently, requires metal resistance strategies. This issue was examined by "shocking" M. sedula with representative metals (Co(2+), Cu(2+), Ni(2+), UO2 (2+), Zn(2+)) at inhibitory and subinhibitory levels. Collectively, one-quarter of the genome (554 open reading frames [ORFs]) responded to inhibitory levels, and two-thirds (354) of the ORFs were responsive to a single metal. Cu(2+) (259 ORFs, 106 Cu(2+)-specific ORFs) and Zn(2+) (262 ORFs, 131 Zn(2+)-specific ORFs) triggered the largest responses, followed by UO2 (2+) (187 ORFs, 91 UO2 (2+)-specific ORFs), Ni(2+) (93 ORFs, 25 Ni(2+)-specific ORFs), and Co(2+) (61 ORFs, 1 Co(2+)-specific ORF). While one-third of the metal-responsive ORFs are annotated as encoding hypothetical proteins, metal challenge also impacted ORFs responsible for identifiable processes related to the cell cycle, DNA repair, and oxidative stress. Surprisingly, there were only 30 ORFs that responded to at least four metals, and 10 of these responded to all five metals. This core transcriptome indicated induction of Fe-S cluster assembly (Msed_1656-Msed_1657), tungsten/molybdenum transport (Msed_1780-Msed_1781), and decreased central metabolism. Not surprisingly, a metal-translocating P-type ATPase (Msed_0490) associated with a copper resistance system (Cop) was upregulated in response to Cu(2+) (6-fold) but also in response to UO2 (2+) (4-fold) and Zn(2+) (9-fold). Cu(2+) challenge uniquely induced assimilatory sulfur metabolism for cysteine biosynthesis, suggesting a role for this amino acid in Cu(2+) resistance or issues in sulfur metabolism. The results indicate that M. sedula employs a range of physiological and biochemical responses to metal challenge, many of which are specific to a single metal and involve proteins with yet unassigned or definitive functions. IMPORTANCE: The mechanisms by which extremely thermoacidophilic archaea resist and are negatively impacted by metals encountered in their natural environments are important to understand so that technologies such as bioleaching, which leverage microbially based conversion of insoluble metal sulfides to soluble species, can be improved. Transcriptomic analysis of the cellular response to metal challenge provided both global and specific insights into how these novel microorganisms negotiate metal toxicity in natural and technological settings. As genetics tools are further developed and implemented for extreme thermoacidophiles, information about metal toxicity and resistance can be leveraged to create metabolically engineered strains with improved bioleaching characteristics.


Assuntos
Ácidos/metabolismo , Proteínas Arqueais/genética , Metais/metabolismo , Sulfolobaceae/genética , Sulfolobaceae/metabolismo , Proteínas Arqueais/metabolismo , Genoma Arqueal , Temperatura Alta , Fases de Leitura Aberta , Sulfolobaceae/isolamento & purificação , Transcriptoma
16.
Biotechnol Bioeng ; 113(12): 2652-2660, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27315782

RESUMO

Acetyl-Coenzyme A carboxylase (ACC), malonyl-CoA reductase (MCR), and malonic semialdehyde reductase (MRS) convert HCO3- and acetyl-CoA into 3-hydroxypropionate (3HP) in the 3-hydroxypropionate/4-hydroxybutyrate carbon fixation cycle resident in the extremely thermoacidophilic archaeon Metallosphaera sedula. These three enzymes, when introduced into the hyperthermophilic archaeon Pyrococcus furiosus, enable production of 3HP from maltose and CO2 . Sub-optimal function of ACC was hypothesized to be limiting for production of 3HP, so accessory enzymes carbonic anhydrase (CA) and biotin protein ligase (BPL) from M. sedula were produced recombinantly in Escherichia coli to assess their function. P. furiosus lacks a native, functional CA, while the M. sedula CA (Msed_0390) has a specific activity comparable to other microbial versions of this enzyme. M. sedula BPL (Msed_2010) was shown to biotinylate the ß-subunit (biotin carboxyl carrier protein) of the ACC in vitro. Since the native BPLs in E. coli and P. furiosus may not adequately biotinylate the M. sedula ACC, the carboxylase was produced in P. furiosus by co-expression with the M. sedula BPL. The baseline production strain, containing only the ACC, MCR, and MSR, grown in a CO2 -sparged bioreactor reached titers of approximately 40 mg/L 3HP. Strains in which either the CA or BPL accessory enzyme from M. sedula was added to the pathway resulted in improved titers, 120 or 370 mg/L, respectively. The addition of both M. sedula CA and BPL, however, yielded intermediate titers of 3HP (240 mg/L), indicating that the effects of CA and BPL on the engineered 3HP pathway were not additive, possible reasons for which are discussed. While further efforts to improve 3HP production by regulating gene dosage, improving carbon flux and optimizing bioreactor operation are needed, these results illustrate the ancillary benefits of accessory enzymes for incorporating CO2 into 3HP production in metabolically engineered P. furiosus, and hint at the important role that CA and BPL likely play in the native 3HP/4HB pathway in M. sedula. Biotechnol. Bioeng. 2016;113: 2652-2660. © 2016 Wiley Periodicals, Inc.


Assuntos
Dióxido de Carbono/metabolismo , Carbono-Nitrogênio Ligases/metabolismo , Anidrases Carbônicas/genética , Proteínas de Escherichia coli/metabolismo , Ácido Láctico/análogos & derivados , Engenharia Metabólica/métodos , Pyrococcus furiosus/fisiologia , Proteínas Repressoras/metabolismo , Dióxido de Carbono/química , Ácido Láctico/biossíntese , Ácido Láctico/química , Engenharia de Proteínas/métodos , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Sulfolobaceae/genética , Sulfolobaceae/metabolismo
17.
J Ind Microbiol Biotechnol ; 43(10): 1455-65, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27520549

RESUMO

Extremely thermoacidophilic members of the Archaea such as the lithoautotroph, Metallosphaera sedula, are among the most acid resistant forms of life and are of great relevance in bioleaching. Here, adaptive laboratory evolution was used to enhance the acid resistance of this organism while genomics and transcriptomics were used in an effort to understand the molecular basis for this trait. Unlike the parental strain, the evolved derivative, M. sedula SARC-M1, grew well at pH of 0.90. Enargite (Cu3AsS4) bioleaching conducted at pH 1.20 demonstrated SARC-M1 leached 23.78 % more copper relative to the parental strain. Genome re-sequencing identified two mutations in SARC-M1 including a nonsynonymous mutation in Msed_0408 (an amino acid permease) and a deletion in pseudogene Msed_1517. Transcriptomic studies by RNA-seq of wild type and evolved strains at various low pH values demonstrated there was enhanced expression of genes in M. sedula SARC-M1 encoding membrane complexes and enzymes that extrude protons or that catalyze proton-consuming reactions. In addition, M. sedula SARC-M1 exhibited reduced expression of genes encoding enzymes that catalyze proton-generating reactions. These unique genomic and transcriptomic features support a model for increased acid resistance arising from enhanced control over cytoplasmic pH.


Assuntos
Sulfolobaceae/genética , Proteínas Arqueais/genética , Proteínas Arqueais/metabolismo , Cobre/metabolismo , Evolução Molecular Direcionada , Perfilação da Expressão Gênica , Genômica , Processos Heterotróficos , Concentração de Íons de Hidrogênio , Mutação , Sulfolobaceae/crescimento & desenvolvimento , Sulfolobaceae/metabolismo
18.
J Ind Microbiol Biotechnol ; 43(9): 1313-21, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27300329

RESUMO

The chemical 3-hydroxypropionate (3HP) is an important starting reagent for the commercial synthesis of specialty chemicals. In this study, a part of the 3-hydroxypropionate/4-hydroxybutyrate cycle from Metallosphaera sedula was utilized for 3HP production. To study the basic biochemistry of this pathway, an in vitro-reconstituted system was established using acetyl-CoA as the substrate for the kinetic analysis of this system. The results indicated that 3HP formation was sensitive to acetyl-CoA carboxylase and malonyl-CoA reductase, but not malonate semialdehyde reductase. Also, the competition between 3HP formation and fatty acid production was analyzed both in vitro and in vivo. This study has highlighted how metabolic flux is controlled by different catalytic components. We believe that this reconstituted system would be valuable for understanding 3HP biosynthesis pathway and for future engineering studies to enhance 3HP production.


Assuntos
Ácido Láctico/análogos & derivados , Oxibato de Sódio/metabolismo , Sulfolobaceae/metabolismo , Acetilcoenzima A/metabolismo , Acetil-CoA Carboxilase/metabolismo , Vias Biossintéticas , Ciclo do Carbono , Cinética , Ácido Láctico/biossíntese , Oxirredutases/metabolismo , Sulfolobaceae/enzimologia
19.
J Biol Chem ; 289(39): 26949-26959, 2014 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-25122768

RESUMO

Conserved clusters of genes encoding DsrE and TusA homologs occur in many archaeal and bacterial sulfur oxidizers. TusA has a well documented function as a sulfurtransferase in tRNA modification and molybdenum cofactor biosynthesis in Escherichia coli, and DsrE is an active site subunit of the DsrEFH complex that is essential for sulfur trafficking in the phototrophic sulfur-oxidizing Allochromatium vinosum. In the acidothermophilic sulfur (S(0))- and tetrathionate (S4O6(2-))-oxidizing Metallosphaera cuprina Ar-4, a dsrE3A-dsrE2B-tusA arrangement is situated immediately between genes encoding dihydrolipoamide dehydrogenase and a heterodisulfide reductase-like complex. In this study, the biochemical features and sulfur transferring abilities of the DsrE2B, DsrE3A, and TusA proteins were investigated. DsrE3A and TusA proved to react with tetrathionate but not with NaSH, glutathione persulfide, polysulfide, thiosulfate, or sulfite. The products were identified as protein-Cys-S-thiosulfonates. DsrE3A was also able to cleave the thiosulfate group from TusA-Cys(18)-S-thiosulfonate. DsrE2B did not react with any of the sulfur compounds tested. DsrE3A and TusA interacted physically with each other and formed a heterocomplex. The cysteine residue (Cys(18)) of TusA is crucial for this interaction. The single cysteine mutants DsrE3A-C(93)S and DsrE3A-C(101)S retained the ability to transfer the thiosulfonate group to TusA. TusA-C(18)S neither reacted with tetrathionate nor was it loaded with thiosulfate with DsrE3A-Cys-S-thiosulfonate as the donor. The transfer of thiosulfate, mediated by a DsrE-like protein and TusA, is unprecedented not only in M. cuprina but also in other sulfur-oxidizing prokaryotes. The results of this study provide new knowledge on oxidative microbial sulfur metabolism.


Assuntos
Proteínas Arqueais/metabolismo , Proteínas de Transporte/metabolismo , Complexos Multiproteicos/metabolismo , Sulfolobaceae/metabolismo , Enxofre/metabolismo , Sulfurtransferases/metabolismo , Substituição de Aminoácidos , Proteínas Arqueais/genética , Proteínas de Transporte/genética , Complexos Multiproteicos/genética , Mutação de Sentido Incorreto , Oxirredução , Homologia de Sequência de Aminoácidos , Sulfolobaceae/genética , Sulfurtransferases/genética
20.
Arch Microbiol ; 197(6): 823-31, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25983134

RESUMO

Bio-oxidation of elemental sulfur (S(0)) is very important in bioleaching and sulfur cycle. S(0) was proposed to be first activated by reacting with reactive thiol groups (-SH) of outer membrane proteins, forming -S n H (n ≥ 2) complexes. The differential expression of -SH of moderately thermophilic Sulfobacillus thermosulfidooxidans and extremely thermophilic Acidianus manzaensis grown on Fe(2+) and S(0) was investigated by synchrotron radiation-based scanning transmission X-ray microscopy (STXM) imaging and micro-beam X-ray fluorescence (µ-XRF) mapping. The STXM imaging and µ-XRF mapping of extracellular -SH were based on the analysis of Ca(2+) bound on the cell. By comparing Ca(2+) of the cells with and without labeling by Ca(2+), the distribution and content of thiol groups were obtained. The results showed that, for both S. thermosulfidooxidans and A. manzaensis, the expression of extracellular -SH of S(0)-grown cells was higher than that of Fe(2+)-grown cells. Statistical analysis indicated that the expression of extracellular -SH for S. thermosulfidooxidans and A. manzaensis grown on S(0) was 2.37 times and 2.14 times, respectively, to that on Fe(2+). These results evidently demonstrate that the extracellular thiol groups are most probably involved in elemental sulfur activation and oxidation of the acidophilic sulfur-oxidizing microorganisms.


Assuntos
Ferro/metabolismo , Compostos de Sulfidrila/metabolismo , Sulfolobaceae/metabolismo , Enxofre/metabolismo , Acidianus/metabolismo , Oxirredução , Microtomografia por Raio-X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA