Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 71
Filtrar
1.
Proc Natl Acad Sci U S A ; 113(3): 614-9, 2016 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-26719414

RESUMO

Since the linking of mutations in the Cu,Zn superoxide dismutase gene (sod1) to amyotrophic lateral sclerosis (ALS) in 1993, researchers have sought the connection between SOD1 and motor neuron death. Disease-linked mutations tend to destabilize the native dimeric structure of SOD1, and plaques containing misfolded and aggregated SOD1 have been found in the motor neurons of patients with ALS. Despite advances in understanding of ALS disease progression and SOD1 folding and stability, cytotoxic species and mechanisms remain unknown, greatly impeding the search for and design of therapeutic interventions. Here, we definitively link cytotoxicity associated with SOD1 aggregation in ALS to a nonnative trimeric SOD1 species. We develop methodology for the incorporation of low-resolution experimental data into simulations toward the structural modeling of metastable, multidomain aggregation intermediates. We apply this methodology to derive the structure of a SOD1 trimer, which we validate in vitro and in hybridized motor neurons. We show that SOD1 mutants designed to promote trimerization increase cell death. Further, we demonstrate that the cytotoxicity of the designed mutants correlates with trimer stability, providing a direct link between the presence of misfolded oligomers and neuron death. Identification of cytotoxic species is the first and critical step in elucidating the molecular etiology of ALS, and the ability to manipulate formation of these species will provide an avenue for the development of future therapeutic strategies.


Assuntos
Esclerose Lateral Amiotrófica/patologia , Neurônios Motores/patologia , Multimerização Proteica , Superóxido Dismutase/toxicidade , Animais , Morte Celular/efeitos dos fármacos , Linhagem Celular , Estabilidade Enzimática/efeitos dos fármacos , Humanos , Modelos Biológicos , Modelos Moleculares , Neurônios Motores/efeitos dos fármacos , Proteínas Mutantes/toxicidade , Mutação/genética , Agregados Proteicos/efeitos dos fármacos , Conformação Proteica , Dobramento de Proteína/efeitos dos fármacos , Multimerização Proteica/efeitos dos fármacos , Superóxido Dismutase/química
2.
Hum Mol Genet ; 24(7): 1883-97, 2015 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-25468678

RESUMO

Transgenic mouse models expressing mutant superoxide dismutase 1 (SOD1) have been critical in furthering our understanding of amyotrophic lateral sclerosis (ALS). However, such models generally overexpress the mutant protein, which may give rise to phenotypes not directly relevant to the disorder. Here, we have analysed a novel mouse model that has a point mutation in the endogenous mouse Sod1 gene; this mutation is identical to a pathological change in human familial ALS (fALS) which results in a D83G change in SOD1 protein. Homozgous Sod1(D83G/D83G) mice develop progressive degeneration of lower (LMN) and upper motor neurons, likely due to the same unknown toxic gain of function as occurs in human fALS cases, but intriguingly LMN cell death appears to stop in early adulthood and the mice do not become paralyzed. The D83 residue coordinates zinc binding, and the D83G mutation results in loss of dismutase activity and SOD1 protein instability. As a result, Sod1(D83G/D83G) mice also phenocopy the distal axonopathy and hepatocellular carcinoma found in Sod1 null mice (Sod1(-/-)). These unique mice allow us to further our understanding of ALS by separating the central motor neuron body degeneration and the peripheral effects from a fALS mutation expressed at endogenous levels.


Assuntos
Esclerose Lateral Amiotrófica/enzimologia , Mutação Puntual , Superóxido Dismutase/genética , Esclerose Lateral Amiotrófica/genética , Animais , Modelos Animais de Doenças , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Neurônios Motores/enzimologia , Mutação de Sentido Incorreto , Superóxido Dismutase/metabolismo , Superóxido Dismutase/toxicidade , Superóxido Dismutase-1
3.
J Neurosci ; 34(6): 2331-48, 2014 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-24501372

RESUMO

Motor neurons are progressively and predominantly degenerated in ALS, which is not only induced by multiple intrinsic pathways but also significantly influenced by the neighboring glial cells. In particular, astrocytes derived from the SOD1 mutant mouse model of ALS or from human familial or sporadic ALS patient brain tissue directly induce motor neuron death in culture; however, the mechanisms of pathological astroglial secretion remain unclear. Here we investigated abnormal calcium homeostasis and altered exocytosis in SOD1G93A astrocytes. We found that purinergic stimulation induces excess calcium release from the ER stores in SOD1G93A astrocytes, which results from the abnormal ER calcium accumulation and is independent of clearance mechanisms. Furthermore, pharmacological studies suggested that store-operated calcium entry (SOCE), a calcium refilling mechanism responsive to ER calcium depletion, is enhanced in SOD1G93A astrocytes. We found that oxidant-induced increased S-glutathionylation and calcium-independent puncta formation of the ER calcium sensor STIM1 underlies the abnormal SOCE response in SOD1G93A astrocytes. Enhanced SOCE contributes to ER calcium overload in SOD1G93A astrocytes and excess calcium release from the ER during ATP stimulation. In addition, ER calcium release induces elevated ATP release from SOD1G93A astrocytes, which can be inhibited by the overexpression of dominant-negative SNARE. Selective inhibition of exocytosis in SOD1G93A astrocytes significantly prevents astrocyte-mediated toxicity to motor neurons and delays disease onset in SOD1G93A mice. Our results characterize a novel mechanism responsible for calcium dysregulation in SOD1G93A astrocytes and provide the first in vivo evidence that astrocyte exocytosis contributes to the pathogenesis of ALS.


Assuntos
Esclerose Lateral Amiotrófica/metabolismo , Astrócitos/fisiologia , Sinalização do Cálcio/fisiologia , Exocitose/fisiologia , Proteínas SNARE/metabolismo , Superóxido Dismutase/metabolismo , Animais , Astrócitos/efeitos dos fármacos , Células Cultivadas , Técnicas de Cocultura/métodos , Feminino , Masculino , Camundongos , Neurônios Motores/efeitos dos fármacos , Neurônios Motores/metabolismo , Superóxido Dismutase/toxicidade
4.
J Biol Chem ; 289(41): 28527-38, 2014 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-25164820

RESUMO

Mutations and aberrant post-translational modifications within Cu,Zn-superoxide dismutase (SOD1) cause this otherwise protective enzyme to misfold, leading to amyotrophic lateral sclerosis (ALS). The C4F6 antibody selectively binds misfolded SOD1 in spinal cord tissues from postmortem human ALS cases, as well as from an ALS-SOD1 mouse model, suggesting that the C4F6 epitope reports on a pathogenic conformation that is common to misfolded SOD1 variants. To date, the residues and structural elements that comprise this epitope have not been elucidated. Using a chemical cross-linking and mass spectrometry approach, we identified the C4F6 epitope within several ALS-linked SOD1 variants, as well as an oxidized form of WT SOD1, supporting the notion that a similar misfolded conformation is shared among pathological SOD1 proteins. Exposure of the C4F6 epitope was modulated by the SOD1 electrostatic (loop VII) and zinc binding (loop IV) loops and correlated with SOD1-induced toxicity in a primary microglia activation assay. Site-directed mutagenesis revealed Asp(92) and Asp(96) as key residues within the C4F6 epitope required for the SOD1-C4F6 binding interaction. We propose that stabilizing the functional loops within SOD1 and/or obscuring the C4F6 epitope are viable therapeutic strategies for treating SOD1-mediated ALS.


Assuntos
Esclerose Lateral Amiotrófica/metabolismo , Epitopos/química , Superóxido Dismutase/química , Esclerose Lateral Amiotrófica/genética , Esclerose Lateral Amiotrófica/patologia , Animais , Anticorpos Monoclonais/biossíntese , Anticorpos Monoclonais/química , Anticorpos Monoclonais/isolamento & purificação , Epitopos/genética , Epitopos/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Expressão Gênica , Humanos , Hibridomas/imunologia , Isoenzimas/química , Isoenzimas/genética , Isoenzimas/metabolismo , Isoenzimas/toxicidade , Camundongos , Microglia/citologia , Microglia/efeitos dos fármacos , Microglia/metabolismo , Mutagênese Sítio-Dirigida , Mutação , Oxirredução , Cultura Primária de Células , Ligação Proteica , Dobramento de Proteína , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/toxicidade , Medula Espinal/química , Medula Espinal/patologia , Superóxido Dismutase/genética , Superóxido Dismutase/metabolismo , Superóxido Dismutase/toxicidade , Superóxido Dismutase-1
5.
Proc Natl Acad Sci U S A ; 109(13): 5074-9, 2012 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-22416121

RESUMO

Recent studies suggest that Cu/Zn superoxide dismutase (SOD1) could be pathogenic in both familial and sporadic amyotrophic lateral sclerosis (ALS) through either inheritable or nonheritable modifications. The presence of a misfolded WT SOD1 in patients with sporadic ALS, along with the recently reported evidence that reducing SOD1 levels in astrocytes derived from sporadic patients inhibits astrocyte-mediated toxicity on motor neurons, suggest that WT SOD1 may acquire toxic properties similar to familial ALS-linked mutant SOD1, perhaps through posttranslational modifications. Using patients' lymphoblasts, we show here that indeed WT SOD1 is modified posttranslationally in sporadic ALS and is iper-oxidized (i.e., above baseline oxidation levels) in a subset of patients with bulbar onset. Derivatization analysis of oxidized carbonyl compounds performed on immunoprecipitated SOD1 identified an iper-oxidized SOD1 that recapitulates mutant SOD1-like properties and damages mitochondria by forming a toxic complex with mitochondrial Bcl-2. This study conclusively demonstrates the existence of an iper-oxidized SOD1 with toxic properties in patient-derived cells and identifies a common SOD1-dependent toxicity between mutant SOD1-linked familial ALS and a subset of sporadic ALS, providing an opportunity to develop biomarkers to subclassify ALS and devise SOD1-based therapies that go beyond the small group of patients with mutant SOD1.


Assuntos
Esclerose Lateral Amiotrófica/enzimologia , Tronco Encefálico/patologia , Proteínas Mutantes/toxicidade , Superóxido Dismutase/efeitos adversos , Superóxido Dismutase/metabolismo , Esclerose Lateral Amiotrófica/patologia , Feminino , Humanos , Linfócitos/efeitos dos fármacos , Linfócitos/enzimologia , Masculino , Pessoa de Meia-Idade , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Mitocôndrias/ultraestrutura , Proteínas Mutantes/química , Proteínas Mutantes/metabolismo , Oxirredução/efeitos dos fármacos , Ligação Proteica/efeitos dos fármacos , Estrutura Quaternária de Proteína , Transporte Proteico/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Superóxido Dismutase/química , Superóxido Dismutase/toxicidade
6.
J Neurosci ; 33(28): 11588-98, 2013 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-23843527

RESUMO

Mutations in superoxide dismutase 1 (SOD1) cause amyotrophic lateral sclerosis (ALS) in 20% of familial cases (fALS). Mitochondria are one of the targets of mutant SOD1 (mutSOD1) toxicity. We previously demonstrated that at the mitochondria, mutSOD1 forms a toxic complex with Bcl-2, which is then converted into a toxic protein via a structural rearrangement that exposes its toxic BH3 domain (Pedrini et al., 2010). Here we now show that formation of this toxic complex with Bcl-2 is the primary event in mutSOD1-induced mitochondrial dysfunction, inhibiting mitochondrial permeability to ADP and inducing mitochondrial hyperpolarization. In mutSOD1-G93A cells and mice, the newly exposed BH3 domain in Bcl-2 alters the normal interaction between Bcl-2 and VDAC1 thus reducing permeability of the outer mitochondrial membrane. In motor neuronal cells, the mutSOD1/Bcl-2 complex causes mitochondrial hyperpolarization leading to cell loss. Small SOD1-like therapeutic peptides that specifically block formation of the mutSOD1/Bcl-2 complex, recover both aspects of mitochondrial dysfunction: they prevent mitochondrial hyperpolarization and cell loss as well as restore ADP permeability in mitochondria of symptomatic mutSOD1-G93A mice.


Assuntos
Esclerose Lateral Amiotrófica/metabolismo , Mitocôndrias/fisiologia , Mutação/fisiologia , Fragmentos de Peptídeos/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/toxicidade , Superóxido Dismutase/toxicidade , Esclerose Lateral Amiotrófica/genética , Animais , Sobrevivência Celular/genética , Feminino , Células HEK293 , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Mitocôndrias/genética , Fragmentos de Peptídeos/genética , Ligação Proteica/fisiologia , Proteínas Proto-Oncogênicas c-bcl-2/genética , Superóxido Dismutase-1
7.
J Neurochem ; 121(3): 475-85, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22332887

RESUMO

Mutations in superoxide dismutase 1 (SOD1) cause familial amyotrophic lateral sclerosis. The Cu-binding capacity of SOD1 has spawned hypotheses that implicate metal-mediated production of reactive species as a potential mechanism of toxicity. In past experiments, we have tested such hypotheses by mutating residues in SOD1 that normally coordinate the binding of Cu, finding that such mutants retain the capacity to induce motor neuron disease. We now describe the lack of disease in mice that express a variant of human SOD1 in which residues that coordinate the binding of Cu and Zn have been mutated (SODMD). SODMD encodes three disease-causing and four experimental mutations that ultimately eliminate all histidines involved in the binding of metals; and includes one disease-causing and one experimental mutation that eliminate secondary metal binding at C6 and C111. We show that the combined effect of these mutations produces a protein that is unstable but does not aggregate on its own, is not toxic, and does not induce disease when co-expressed with high levels of wild-type SOD1. In cell culture models, we determine that the combined mutation of C6 and C111 to G and S, respectively, dramatically reduces the aggregation propensity of SODMD and may account for the lack of toxicity for this mutant.


Assuntos
Esclerose Lateral Amiotrófica/genética , Cisteína/química , Metais/metabolismo , Mutação/genética , Mutação/fisiologia , Superóxido Dismutase/genética , Superóxido Dismutase/toxicidade , Animais , Sítios de Ligação , Northern Blotting , Células Cultivadas , Cobre/metabolismo , Células HEK293 , Histidina/química , Humanos , Imuno-Histoquímica , Camundongos , Camundongos Transgênicos , Reação em Cadeia da Polimerase , RNA Mensageiro/biossíntese , RNA Mensageiro/genética , Medula Espinal/citologia , Medula Espinal/metabolismo , Superóxido Dismutase/química , Superóxido Dismutase-1 , Transfecção , Zinco/metabolismo
8.
Hum Mol Genet ; 19(15): 2974-86, 2010 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-20460269

RESUMO

In mutant superoxide dismutase (SOD1)-linked amyotrophic lateral sclerosis (ALS), accumulation of misfolded mutant SOD1 in spinal cord mitochondria is thought to cause mitochondrial dysfunction. Whether mutant SOD1 is toxic per se or whether it damages the mitochondria through interactions with other mitochondrial proteins is not known. We previously identified Bcl-2 as an interacting partner of mutant SOD1 specifically in spinal cord, but not in liver, mitochondria of SOD1 mice and patients. We now show that mutant SOD1 toxicity relies on this interaction. Mutant SOD1 induces mitochondrial morphological changes and compromises mitochondrial membrane integrity leading to release of Cytochrome C only in the presence of Bcl-2. In cells, mouse and human spinal cord with SOD1 mutations, the binding to mutant SOD1 triggers a conformational change in Bcl-2 that results in the uncovering of its toxic BH3 domain and conversion of Bcl-2 into a toxic protein. Bcl-2 carrying a mutagenized, non-toxic BH3 domain fails to support mutant SOD1 mitochondrial toxicity. The identification of Bcl-2 as a specific target and active partner in mutant SOD1 mitochondrial toxicity suggests new therapeutic strategies to inhibit the formation of the toxic mutant SOD1/Bcl-2 complex and to prevent mitochondrial damage in ALS.


Assuntos
Esclerose Lateral Amiotrófica/enzimologia , Esclerose Lateral Amiotrófica/genética , Mitocôndrias/patologia , Proteínas Mutantes/genética , Proteínas Proto-Oncogênicas c-bcl-2/química , Superóxido Dismutase/genética , Esclerose Lateral Amiotrófica/patologia , Animais , Linhagem Celular , Sobrevivência Celular , Humanos , Camundongos , Camundongos Mutantes Neurológicos , Mitocôndrias/ultraestrutura , Mutação/genética , Estrutura Terciária de Proteína , Proteínas Proto-Oncogênicas c-bcl-2/toxicidade , Superóxido Dismutase/toxicidade
9.
Bioorg Med Chem Lett ; 22(21): 6647-50, 2012 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-23021992

RESUMO

Amyotrophic lateral sclerosis (ALS) is a debilitating and fatal neurodegenerative disease. Although the cause remains unknown, misfolded protein aggregates are seen in neurons of sporadic ALS patients, and familial ALS mutations, including mutations in superoxide dismutase 1 (SOD1), produce proteins with an increased propensity to misfold and aggregate. A structure activity relationship of a lead scaffold exhibiting neuroprotective activity in a G93A-SOD1 mouse model for ALS has been further investigated in a model PC12 cellular assay. Synthesis of biotinylated probes at the N(1) nitrogen of the pyrazolone ring gave compounds (5d-e) that retained activity within 10-fold of the proton-bearing lead compound (5a) and were equipotent with a sterically less cumbersome N(1)-methyl substituted analogue (5b). However, when methyl substitution was introduced at N(1) and N(2) of the pyrazolone ring, the compound was inactive (5c). These data led us to investigate further the pharmacophoric nature of the pyrazolone unit. A range of N(1) substitutions were tolerated, leading to the identification of an N(1)-benzyl substituted pyrazolone (5m), equipotent with 5a. Substitution at N(2) or excision of N(2), however, removed all activity. Therefore, the hydrogen bond donating ability of the N(2)-H of the pyrazolone ring appears to be a critical part of the structure, which will influence further analogue synthesis.


Assuntos
Esclerose Lateral Amiotrófica/tratamento farmacológico , Pirazolonas/química , Superóxido Dismutase/química , Superóxido Dismutase/genética , Esclerose Lateral Amiotrófica/genética , Animais , Sobrevivência Celular/efeitos dos fármacos , Ciclopentanos/síntese química , Ciclopentanos/química , Ciclopentanos/farmacologia , Modelos Animais de Doenças , Humanos , Ligação de Hidrogênio , Camundongos , Mutação , Células PC12 , Dobramento de Proteína , Pirazolonas/farmacologia , Superóxido Dismutase/metabolismo , Superóxido Dismutase/toxicidade , Superóxido Dismutase-1
10.
PLoS Genet ; 5(3): e1000399, 2009 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-19266020

RESUMO

Genetic background exerts a strong modulatory effect on the toxicity of aggregation-prone proteins in conformational diseases. In addition to influencing the misfolding and aggregation behavior of the mutant proteins, polymorphisms in putative modifier genes may affect the molecular processes leading to the disease phenotype. Mutations in SOD1 in a subset of familial amyotrophic lateral sclerosis (ALS) cases confer dominant but clinically variable toxicity, thought to be mediated by misfolding and aggregation of mutant SOD1 protein. While the mechanism of toxicity remains unknown, both the nature of the SOD1 mutation and the genetic background in which it is expressed appear important. To address this, we established a Caenorhabditis elegans model to systematically examine the aggregation behavior and genetic interactions of mutant forms of SOD1. Expression of three structurally distinct SOD1 mutants in C. elegans muscle cells resulted in the appearance of heterogeneous populations of aggregates and was associated with only mild cellular dysfunction. However, introduction of destabilizing temperature-sensitive mutations into the genetic background strongly enhanced the toxicity of SOD1 mutants, resulting in exposure of several deleterious phenotypes at permissive conditions in a manner dependent on the specific SOD1 mutation. The nature of the observed phenotype was dependent on the temperature-sensitive mutation present, while its penetrance reflected the specific combination of temperature-sensitive and SOD1 mutations. Thus, the specific toxic phenotypes of conformational disease may not be simply due to misfolding/aggregation toxicity of the causative mutant proteins, but may be defined by their genetic interactions with cellular pathways harboring mildly destabilizing missense alleles.


Assuntos
Esclerose Lateral Amiotrófica/enzimologia , Caenorhabditis elegans/genética , Expressão Gênica , Mutação , Polimorfismo Genético , Superóxido Dismutase/toxicidade , Esclerose Lateral Amiotrófica/genética , Animais , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/toxicidade , Caenorhabditis elegans/efeitos dos fármacos , Caenorhabditis elegans/metabolismo , Humanos , Proteínas Luminescentes/química , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Proteínas Luminescentes/toxicidade , Células Musculares/efeitos dos fármacos , Células Musculares/metabolismo , Fenótipo , Dobramento de Proteína , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Proteínas Recombinantes de Fusão/toxicidade , Superóxido Dismutase/química , Superóxido Dismutase/genética , Superóxido Dismutase/metabolismo , Superóxido Dismutase-1 , Temperatura
11.
Drug Chem Toxicol ; 35(2): 155-61, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21834671

RESUMO

Human copper/zinc superoxide dismutase from recombinant Pichia pastori (RH-Cu/Zn-SOD) was orally administered, via gavage, to Sprague-Dawley rats at 500, 1,000, and 2,000 mg/kg body weight/day for 28 days. During the 28-day period, animals were examined for evidence of toxicity; there were no deaths, and in-life physical signs were normal. On day 29, the animals were exsanguinated, examined for gross pathology, and tissues were preserved for histopathology. Although statistical differences were noted in some hematology and clinical chemistry, they were of questionable biological significance. The results of the 28-day oral administration demonstrated a lack of toxicity of RH-Cu/Zn-SOD in rats. There were no treatment-related, toxicologically relevant changes in clinical signs, growth, food consumption, hematology, clinical chemistry, organ weights, or pathology. The no observed adverse effect level was greater than 2,000 mg/kg/day for RH-Cu/Zn-SOD in rats.


Assuntos
Superóxido Dismutase/toxicidade , Alanina Transaminase/sangue , Fosfatase Alcalina/sangue , Animais , Aspartato Aminotransferases/sangue , Bilirrubina/sangue , Contagem de Células Sanguíneas , Proteínas Sanguíneas/metabolismo , Nitrogênio da Ureia Sanguínea , Creatinina/sangue , Esquema de Medicação , Eletrólitos/sangue , Feminino , Hematócrito , Hemoglobinas/metabolismo , Histocitoquímica , Humanos , Masculino , Pichia/enzimologia , Pichia/genética , Distribuição Aleatória , Ratos , Ratos Sprague-Dawley , Proteínas Recombinantes/toxicidade , Superóxido Dismutase/administração & dosagem , Urinálise , gama-Glutamiltransferase/sangue
12.
Hum Mol Genet ; 18(23): 4552-64, 2009 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-19779023

RESUMO

Amyotrophic lateral sclerosis (ALS) is a fatal neurological disorder characterized by motor neuron degeneration. Mutations in Cu,Zn-superoxide dismutase (SOD1) are responsible for 20% of familial ALS cases via a toxic gain of function. In mutant SOD1 transgenic mice, mitochondria of spinal motor neurons develop abnormal morphology, bioenergetic defects and degeneration, which are presumably implicated in disease pathogenesis. SOD1 is mostly a cytosolic protein, but a substantial portion is associated with organelles, including mitochondria, where it localizes predominantly in the intermembrane space (IMS). However, whether mitochondrial mutant SOD1 contributes to disease pathogenesis remains to be elucidated. We have generated NSC34 motor neuronal cell lines expressing wild-type or mutant SOD1 containing a cleavable IMS targeting signal to directly investigate the pathogenic role of mutant SOD1 in mitochondria. We show that mitochondrially-targeted SOD1 localizes to the IMS, where it is enzymatically active. We prove that mutant IMS-targeted SOD1 causes neuronal toxicity under metabolic and oxidative stress conditions. Furthermore, we demonstrate for the first time neurite mitochondrial fragmentation and impaired mitochondrial dynamics in motor neurons expressing IMS mutant SOD1. These defects are associated with impaired maintenance of neuritic processes. Our findings demonstrate that mutant SOD1 localized in the IMS is sufficient to determine mitochondrial abnormalities and neuronal toxicity, and contributes to ALS pathogenesis.


Assuntos
Esclerose Lateral Amiotrófica/enzimologia , Mitocôndrias/enzimologia , Neurônios Motores/enzimologia , Mutação , Superóxido Dismutase/genética , Superóxido Dismutase/toxicidade , Esclerose Lateral Amiotrófica/genética , Esclerose Lateral Amiotrófica/patologia , Animais , Linhagem Celular , Modelos Animais de Doenças , Humanos , Camundongos , Camundongos Transgênicos , Mitocôndrias/genética , Membranas Mitocondriais/enzimologia , Neurônios Motores/patologia , Estresse Oxidativo , Transporte Proteico , Superóxido Dismutase-1
13.
J Neurochem ; 112(1): 183-92, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19845829

RESUMO

The copper-enzyme cytochrome c oxidase (Cytox) has been indicated as a primary molecular target of mutant copper, zinc superoxide dismutase (SOD1) in familial amyotrophic lateral sclerosis (fALS); however, the mechanism underlying its inactivation is still unclear. As the toxicity of mutant SOD1s could arise from their selective recruitment to mitochondria, it is conceivable that they might compete with Cytox for the mitochondrial copper pool causing Cytox inactivation. To investigate this issue, we used mouse motoneuronal neuroblastoma x spinal cord cell line-34, stably transfected for the inducible expression of low amounts of wild-type or mutant (G93A, H46R, and H80R) human SOD1s and compared the effects observed on Cytox with those obtained by copper depletion. We demonstrated that all mutants analyzed induced cell death and decreased the Cytox activity, but not the protein content of the Cytox subunit II, at difference with copper depletion that also affected subunit II protein. Copper supplementation did not counteract mutant hSOD1s toxicity. Otherwise, the treatment of neuroblastoma x spinal cord cell line-34 expressing G93A, H46R, or H80R hSOD1 mutants, and showing constitutive expression of iNOS and nNOS, with either a NO scavenger, or NOS inhibitors prevented the inhibition of Cytox activity and rescued cell viability. These results support the involvement of NO in mutant SOD1s-induced Cytox damage, and mitochondrial toxicity.


Assuntos
Cobre/fisiologia , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Neurônios Motores/enzimologia , Mutação , Óxido Nítrico/fisiologia , Superóxido Dismutase/genética , Animais , Linhagem Celular Tumoral , Sobrevivência Celular/genética , Cobre/deficiência , Complexo IV da Cadeia de Transporte de Elétrons/antagonistas & inibidores , Complexo IV da Cadeia de Transporte de Elétrons/genética , Ativação Enzimática/genética , Humanos , Camundongos , Neurônios Motores/metabolismo , Superóxido Dismutase/toxicidade , Superóxido Dismutase-1
14.
FASEB J ; 23(11): 3766-79, 2009 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-19638399

RESUMO

Novel therapeutic approaches for the treatment of neurodegenerative disorders comprise drug candidates designed specifically to act on multiple central nervous system targets. We have recently synthesized multifunctional, nontoxic, brain-permeable iron-chelating drugs, M30 and HLA20, possessing the N-propargylamine neuroprotective moiety of rasagiline (Azilect) and the iron-chelating moiety of VK28. The present study demonstrates that M30 and HLA20 possess a wide range of pharmacological activities in mouse NSC-34 motor neuron cells, including neuroprotective effects against hydrogen peroxide- and 3-morpholinosydnonimine-induced neurotoxicity, induction of differentiation, and up-regulation of hypoxia-inducible factor (HIF)-1alpha and HIF-target genes (enolase1 and vascular endothelial growth factor). Both compounds induced NSC-34 neuritogenesis, accompanied by a marked increase in the expression of brain-derived neurotrophic factor and growth-associated protein-43, which was inhibited by PD98059 and GF109203X, indicating the involvement of mitogen-activated protein kinase and protein kinase C pathways. A major finding was the ability of M30 to significantly extend the survival of G93A-SOD1 amyotrophic lateral sclerosis mice and delay the onset of the disease. These properties of the novel multimodal iron-chelating drugs possessing neuroprotective/neuritogenic activities may offer future therapeutic possibilities for motor neurodegenerative diseases.


Assuntos
Esclerose Lateral Amiotrófica/tratamento farmacológico , Quelantes de Ferro/uso terapêutico , Neurônios Motores/efeitos dos fármacos , Fármacos Neuroprotetores/uso terapêutico , Animais , Apoptose/efeitos dos fármacos , Fator Neurotrófico Derivado do Encéfalo/biossíntese , Diferenciação Celular/efeitos dos fármacos , Linhagem Celular , Modelos Animais de Doenças , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Proteína GAP-43/biossíntese , Quinase 3 da Glicogênio Sintase/metabolismo , Glicogênio Sintase Quinase 3 beta , Peróxido de Hidrogênio/toxicidade , Hidroxiquinolinas/uso terapêutico , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Camundongos , Camundongos Transgênicos , Molsidomina/análogos & derivados , Molsidomina/toxicidade , Neurônios Motores/metabolismo , Neuritos/efeitos dos fármacos , Neuritos/fisiologia , Fosfopiruvato Hidratase/biossíntese , Piperazinas/uso terapêutico , Proteínas Proto-Oncogênicas c-akt/metabolismo , Receptores da Transferrina/biossíntese , Transdução de Sinais/efeitos dos fármacos , Superóxido Dismutase/toxicidade , Superóxido Dismutase-1 , Fator A de Crescimento do Endotélio Vascular/biossíntese
15.
Ecotoxicology ; 19(7): 1193-200, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-20535553

RESUMO

Coal mining and incineration of solid residues of health services (SRHS) generate several contaminants that are delivered into the environment, such as heavy metals and dioxins. These xenobiotics can lead to oxidative stress overgeneration in organisms and cause different kinds of pathologies, including cancer. In the present study the concentrations of heavy metals such as lead, copper, iron, manganese and zinc in the urine, as well as several enzymatic and non-enzymatic biomarkers of oxidative stress in the blood (contents of lipoperoxidation = TBARS, protein carbonyls = PC, protein thiols = PT, α-tocopherol = AT, reduced glutathione = GSH, and the activities of glutathione S-transferase = GST, glutathione reductase = GR, glutathione peroxidase = GPx, catalase = CAT and superoxide dismutase = SOD), in the blood of six different groups (n = 20 each) of subjects exposed to airborne contamination related to coal mining as well as incineration of solid residues of health services (SRHS) after vitamin E (800 mg/day) and vitamin C (500 mg/day) supplementation during 6 months, which were compared to the situation before the antioxidant intervention (Ávila et al., Ecotoxicology 18:1150-1157, 2009; Possamai et al., Ecotoxicology 18:1158-1164, 2009). Except for the decreased manganese contents, heavy metal concentrations were elevated in all groups exposed to both sources of airborne contamination when compared to controls. TBARS and PC concentrations, which were elevated before the antioxidant intervention decreased after the antioxidant supplementation. Similarly, the contents of PC, AT and GSH, which were decreased before the antioxidant intervention, reached values near those found in controls, GPx activity was reestablished in underground miners, and SOD, CAT and GST activities were reestablished in all groups. The results showed that the oxidative stress condition detected previously to the antioxidant supplementation in both directly and indirectly subjects exposed to the airborne contamination from coal dusts and SRHS incineration, was attenuated after the antioxidant intervention.


Assuntos
Poluentes Ocupacionais do Ar/toxicidade , Antioxidantes/uso terapêutico , Minas de Carvão , Suplementos Nutricionais , Estresse Oxidativo , Ácido Ascórbico/administração & dosagem , Ácido Ascórbico/uso terapêutico , Biomarcadores/sangue , Estudos de Casos e Controles , Exposição Ambiental , Glutationa/sangue , Glutationa/toxicidade , Glutationa Redutase/sangue , Glutationa Redutase/toxicidade , Humanos , Incineração , Peroxidação de Lipídeos , Metais Pesados/toxicidade , Metais Pesados/urina , Carbonilação Proteica , Superóxido Dismutase/sangue , Superóxido Dismutase/toxicidade , Substâncias Reativas com Ácido Tiobarbitúrico/toxicidade , Vitamina E/administração & dosagem , Vitamina E/uso terapêutico , alfa-Tocoferol/sangue , alfa-Tocoferol/toxicidade
16.
Biochemistry ; 48(15): 3436-47, 2009 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-19227972

RESUMO

Over 100 mutations in the gene encoding human copper-zinc superoxide dismutase (SOD1) cause an inherited form of the fatal neurodegenerative disease amyotrophic lateral sclerosis (ALS). Two pathogenic SOD1 mutations, His46Arg (H46R) and His48Gln (H48Q), affect residues that act as copper ligands in the wild type enzyme. Transgenic mice expressing a human SOD1 variant containing both mutations develop paralytic disease akin to ALS. Here we show that H46R/H48Q SOD1 possesses multiple characteristics that distinguish it from the wild type. These properties include the following: (1) an ablated copper-binding site, (2) a substantially weakened affinity for zinc, (3) a binding site for a calcium ion, (4) the ability to form stable heterocomplexes with the copper chaperone for SOD1 (CCS), and (5) compromised CCS-mediated oxidation of the intrasubunit disulfide bond in vivo. The results presented here, together with data on pathogenic SOD1 proteins coming from cell culture and transgenic mice, suggest that incomplete posttranslational modification of nascent SOD1 polypeptides via CCS may be a characteristic shared by familial ALS SOD1 mutants, leading to a population of destabilized, off-pathway folding intermediates that are toxic to motor neurons.


Assuntos
Substituição de Aminoácidos/genética , Variação Genética , Mutação , Superóxido Dismutase/química , Superóxido Dismutase/genética , Animais , Arginina/genética , Linhagem Celular , Cobre/química , Cristalografia por Raios X , Estabilidade Enzimática/genética , Glutamina/genética , Histidina/genética , Humanos , Camundongos , Camundongos Transgênicos , Chaperonas Moleculares/química , Chaperonas Moleculares/metabolismo , Processamento de Proteína Pós-Traducional/genética , Eletricidade Estática , Superóxido Dismutase/metabolismo , Superóxido Dismutase/toxicidade , Superóxido Dismutase-1
17.
Science ; 286(5449): 2498-500, 1999 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-10617463

RESUMO

Mutations in copper, zinc superoxide dismutase (SOD) have been implicated in the selective death of motor neurons in 2 percent of amyotrophic lateral sclerosis (ALS) patients. The loss of zinc from either wild-type or ALS-mutant SODs was sufficient to induce apoptosis in cultured motor neurons. Toxicity required that copper be bound to SOD and depended on endogenous production of nitric oxide. When replete with zinc, neither ALS-mutant nor wild-type copper, zinc SODs were toxic, and both protected motor neurons from trophic factor withdrawal. Thus, zinc-deficient SOD may participate in both sporadic and familial ALS by an oxidative mechanism involving nitric oxide.


Assuntos
Esclerose Lateral Amiotrófica/enzimologia , Apoptose , Neurônios Motores/citologia , Óxido Nítrico/metabolismo , Superóxido Dismutase/metabolismo , Zinco/metabolismo , Esclerose Lateral Amiotrófica/tratamento farmacológico , Esclerose Lateral Amiotrófica/genética , Esclerose Lateral Amiotrófica/patologia , Animais , Fator Neurotrófico Derivado do Encéfalo/farmacologia , Células Cultivadas , Quelantes/farmacologia , Cobre/metabolismo , Fluoresceínas/metabolismo , Lipossomos , Neurônios Motores/metabolismo , Mutação , Nitratos/metabolismo , Óxido Nítrico Sintase/antagonistas & inibidores , Óxido Nítrico Sintase/metabolismo , Óxido Nítrico Sintase Tipo I , Oxirredução , Ratos , Superóxido Dismutase/química , Superóxido Dismutase/genética , Superóxido Dismutase/toxicidade , Superóxidos/metabolismo
18.
Neuron ; 43(1): 19-30, 2004 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-15233914

RESUMO

Familial amyotrophic lateral sclerosis (ALS)-linked mutations in the copper-zinc superoxide dismutase (SOD1) gene cause motor neuron death in about 3% of ALS cases. While the wild-type (wt) protein is anti-apoptotic, mutant SOD1 promotes apoptosis. We now demonstrate that both wt and mutant SOD1 bind the anti-apoptotic protein Bcl-2, providing evidence of a direct link between SOD1 and an apoptotic pathway. This interaction is evident in vitro and in vivo in mouse and human spinal cord. We also demonstrate that in mice and humans, Bcl-2 binds to high molecular weight SDS-resistant mutant SOD1 containing aggregates that are present in mitochondria from spinal cord but not liver. These findings provide new insights into the anti-apoptotic function of SOD1 and suggest that entrapment of Bcl-2 by large SOD1 aggregates may deplete motor neurons of this anti-apoptotic protein.


Assuntos
Células do Corno Anterior/metabolismo , Mitocôndrias/metabolismo , Doença dos Neurônios Motores/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Superóxido Dismutase/metabolismo , Animais , Células do Corno Anterior/enzimologia , Apoptose/genética , Sítios de Ligação/genética , Linhagem Celular Tumoral , Humanos , Fígado/enzimologia , Fígado/patologia , Substâncias Macromoleculares , Camundongos , Mitocôndrias/enzimologia , Mitocôndrias/genética , Peso Molecular , Doença dos Neurônios Motores/genética , Doença dos Neurônios Motores/fisiopatologia , Mutação/genética , Ligação Proteica/genética , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Estrutura Terciária de Proteína/genética , Proteínas Proto-Oncogênicas c-bcl-2/genética , Superóxido Dismutase/genética , Superóxido Dismutase/toxicidade , Superóxido Dismutase-1
19.
Neuron ; 43(1): 5-17, 2004 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-15233913

RESUMO

One cause of amyotrophic lateral sclerosis (ALS) is mutation in ubiquitously expressed copper/zinc superoxide dismutase (SOD1), but the mechanism of toxicity to motor neurons is unknown. Multiple disease-causing mutants, but not wild-type SOD1, are now demonstrated to be recruited to mitochondria, but only in affected tissues. This is independent of the copper chaperone for SOD1 and dismutase activity. Highly preferential association with spinal cord mitochondria is seen in human ALS for a mutant SOD1 that accumulates only to trace cytoplasmic levels. Despite variable proportions that are successfully imported, nearly constant amounts of SOD1 mutants and covalently damaged adducts of them accumulate as apparent import intermediates and/or are tightly aggregated or crosslinked onto integral membrane components on the cytoplasmic face of those mitochondria. These findings implicate damage from action of spinal cord-specific factors that recruit mutant SOD1 to spinal mitochondria as the basis for their selective toxicity in ALS.


Assuntos
Mitocôndrias/enzimologia , Doença dos Neurônios Motores/enzimologia , Degeneração Neural/enzimologia , Medula Espinal/enzimologia , Superóxido Dismutase/metabolismo , Superóxido Dismutase/toxicidade , Envelhecimento/metabolismo , Animais , Citoplasma/metabolismo , Modelos Animais de Doenças , Humanos , Membranas Intracelulares/enzimologia , Membranas Intracelulares/patologia , Membranas Intracelulares/ultraestrutura , Substâncias Macromoleculares , Camundongos , Camundongos Transgênicos , Microscopia Eletrônica , Mitocôndrias/genética , Mitocôndrias/patologia , Proteínas Mitocondriais/metabolismo , Chaperonas Moleculares/metabolismo , Doença dos Neurônios Motores/genética , Doença dos Neurônios Motores/patologia , Mutação/genética , Degeneração Neural/genética , Degeneração Neural/fisiopatologia , Ligação Proteica/genética , Dobramento de Proteína , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Transporte Proteico/genética , Medula Espinal/química , Medula Espinal/patologia , Superóxido Dismutase/genética , Superóxido Dismutase-1
20.
Curr Protein Pept Sci ; 8(6): 573-9, 2007 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-18220844

RESUMO

Protein aggregation is implicated in a plethora of neurodegenerative diseases. The proteins found to aggregate in these diseases are unrelated in their native structures and amino acid sequences, but form similar insoluble fibrils with characteristic cross-beta sheet morphologies called amyloid in the aggregated state. While both the mechanism of aggregation and the structure of the aggregates are not fully understood at the molecular level, recent studies provide strong support for the idea that protein aggregation into highly stable, insoluble amyloid structures is a general property of the polypeptide chain. For proteins with a unique native state, it is known that aggregation occurs under conditions that promote native-state destabilization in vitro and in vivo. Taken together, the results of several important recent investigations suggest three broad molecular frameworks that may underlie the conversion of normally soluble peptides and proteins into insoluble amyloid fibrils: (1) edge-strand hydrogen bonding, (2) domain-swapping, and (3) self-association of amyloidogenic fragments. We argue that these underlying scenarios are not mutually exclusive and may be protein-dependent - i.e., a protein with a high content of hinge-regions may aggregate via a runaway domain-swap, whereas a protein with a high content of amyloidogenic fragments may aggregate primarily by the self-association of these fragments. These different scenarios provide frameworks to understand the molecular mechanism of polypeptide aggregation.


Assuntos
Amiloide/química , Amiloide/metabolismo , Doenças Neurodegenerativas/metabolismo , Peptídeos/química , Peptídeos/metabolismo , Citotoxinas/química , Citotoxinas/metabolismo , Humanos , Peptídeos/toxicidade , Ligação Proteica , Superóxido Dismutase/química , Superóxido Dismutase/metabolismo , Superóxido Dismutase/toxicidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA