Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.915
Filtrar
1.
Anal Chem ; 96(24): 10013-10020, 2024 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-38836548

RESUMO

Traditional methods for the detection of pathogenic bacteria are time-consuming, less efficient, and sensitive, which affects infection control and bungles illness. Therefore, developing a method to remedy these problems is very important in the clinic to diagnose the pathogenic diseases and guide the rational use of antibiotics. Here, microfluidic electrochemical integrated sensor (MEIS) has been investigated, functionally for rapid, efficient separation and sensitive detection of pathogenic bacteria. Three-dimensional macroporous PDMS and Au nanotube-based electrode are successfully assembled into the modeling microchip, playing the functions of "3D chaotic flow separator" and "electrochemical detector," respectively. The 3D chaotic flow separator enhances the turbulence of the fluid, achieving an excellent bacteria capture efficiency. Meanwhile, the electrochemical detector provides a quantitative signal through enzyme-linked immunoelectrochemistry with improved sensitivity. The microfluidic electrochemical integrated sensor could successfully isolate Candida albicans (C. albicans) in the range of 30-3,000,000 CFU in the saliva matrix with over 95% capture efficiency and sensitively detect C. albicans in 1 h in oral saliva samples. The integrated device demonstrates great potential in the diagnosis of oral candidiasis and is also applicable in the detection of other pathogenic bacteria.


Assuntos
Candida albicans , Técnicas Eletroquímicas , Candida albicans/isolamento & purificação , Técnicas Eletroquímicas/instrumentação , Técnicas Analíticas Microfluídicas/instrumentação , Saliva/microbiologia , Saliva/química , Eletrodos , Humanos , Ouro/química
2.
Anal Chem ; 96(25): 10228-10236, 2024 06 25.
Artigo em Inglês | MEDLINE | ID: mdl-38867346

RESUMO

Exocytosis of a single cell has been extensively researched in recent years due to its close association with numerous diseases. However, current methods only investigate exocytosis at either the single-cell or multiple-cell level, and a method for simultaneously studying exocytosis at both levels has yet to be established. In this study, a combined device incorporating ultramicroelectrode (UME) electrochemistry and surface plasmon resonance (SPR) was developed, enabling the simultaneous monitoring of single-cell and multiple-cell exocytosis. PC12 cells were cultured directly on the SPR sensing Au film, with a carboxylated carbon nanopipette (c-CNP) electrode employed for electrochemical detection in the SPR reaction cell. Upon exocytosis, the released dopamine diffuses onto the inner wall of c-CNP, undergoing an electrochemical reaction to generate a current peak. Concurrently, exocytosis can also induce changes in the refractive index of the Au film surface, leading to the SPR signal. Consequently, the device enables real-time monitoring of exocytosis from both single and multiple cells with a high spatiotemporal resolution. The c-CNP electrode exhibited excellent resistance to protein contamination, high sensitivity for dopamine detection, and the capability to continuously monitor dopamine exocytosis over an extended period. Analysis of both SPR and electrochemical signals revealed a positive correlation between changes in the SPR signal and the frequency of exocytosis. This study introduces a novel method and platform for the simultaneous investigation of single-cell and multiple-cell exocytosis.


Assuntos
Dopamina , Técnicas Eletroquímicas , Exocitose , Microeletrodos , Ressonância de Plasmônio de Superfície , Células PC12 , Animais , Ratos , Técnicas Eletroquímicas/métodos , Técnicas Eletroquímicas/instrumentação , Dopamina/análise , Dopamina/metabolismo , Ouro/química , Análise de Célula Única/instrumentação
3.
Anal Chem ; 96(31): 12701-12709, 2024 08 06.
Artigo em Inglês | MEDLINE | ID: mdl-39039062

RESUMO

Microelectrodes are useful electrochemical sensors that can provide spatial biological monitoring. Carbon fiber has been by far the most widely used microelectrode; however, a vast number of different materials and modification strategies have been developed to broaden the scope of microelectrodes. Carbon composite electrodes provide a simple approach to making microelectrodes with a wide range of materials, but manufacturing strategies are complex. 3D printing can provide the ability to make microelectrodes with high precision. We used fused filament fabrication to print single strands of carbon black/polylactic acid (CB/PLA) and multiwall carbon nanotube/polylactic acid (MWCNT/PLA), which were then made into microelectrodes. Microelectrodes ranged from 70 µm in diameter to 400 µm in diameter and were assessed using standard redox probes. MWCNT/PLA electrodes exhibited greater sensitivity, a lower limit of detection, and stability for the measurement of serotonin (5-HT). Both CB/PLA and MWCNT/PLA microelectrodes were able to monitor 5-HT overflow from the ex vivo ileum tissue. MWCNT/PLA microelectrodes were utilized to show differences in 5-HT overflow from ex vivo ileum and colon following exposure to odorants present in spices. These findings highlight that any conductive thermoplastic material can be fabricated into a microelectrode. This simple strategy can utilize a wide range of materials to make 3D-printed microelectrodes for a diverse range of applications.


Assuntos
Microeletrodos , Nanotubos de Carbono , Impressão Tridimensional , Nanotubos de Carbono/química , Animais , Serotonina/análise , Poliésteres/química , Fuligem/química , Técnicas Eletroquímicas/instrumentação , Técnicas Eletroquímicas/métodos
4.
Anal Chem ; 96(29): 12147-12154, 2024 07 23.
Artigo em Inglês | MEDLINE | ID: mdl-38994635

RESUMO

Charge transport in molecular junctions provides an excellent way to investigate the response of molecules to intrinsic changes and external stimuli, exhibiting powerful potential for developing sensors. However, achieving multianalyte recognition remains a challenge. Herein, we innovatively developed an electrical array sensor based on peptide self-assembled layers for discriminating various heavy metal ions. Three peptide sequences were designed as sensing units with varying binding affinities for different metal ions. Electrical measurements demonstrated that different metal ions diversely affect the charge transport of peptide junctions. By using principal component analysis, a clear discrimination between the five kinds of heavy metal ions can be achieved. In the analysis of real samples, the array sensor showed a reliable anti-interference capability. The array sensor offers possibilities for large-area molecular junctions to construct functional molecular sensing devices.


Assuntos
Metais Pesados , Peptídeos , Peptídeos/química , Peptídeos/análise , Metais Pesados/análise , Metais Pesados/química , Técnicas Eletroquímicas/instrumentação , Técnicas Eletroquímicas/métodos , Técnicas Biossensoriais/métodos , Análise de Componente Principal
5.
Anal Chem ; 96(29): 12173-12180, 2024 07 23.
Artigo em Inglês | MEDLINE | ID: mdl-39004816

RESUMO

Emerging point-of-care testing methods are extremely beneficial for personalized assessments of trace element metabolism including selenium (Se). Given the lack of timely evaluation methods for well-received Se fortification, an electrochemical solution was developed based on the recently identified urinary selenosugar (Sel) as a marker. The Se content of crude urine was rapidly determined (∼5 min), and the square-wave voltammetric responses of a Se-selective probe (SeSE) composed of liquid metal amalgam demonstrated comparable performance (e.g., detection limit: 19 nM) to central lab benchtop equipment within the physiological range. Meanwhile, SeSE enabled total urinary Se detection via a mere one-step oxidation. Additionally, SeSE was utilized to jointly assess the apparent internalization and utilization rate of two typical nutrients, selenite and selenomethionine, in a rat nutrition model, demonstrating consistent results with those obtained by HPLC-MS and ICP-MS. Upon systematic standardization directed by Ramaley's theory, SeSE was integrated into a battery-operated portable kit (dubbed "SeEye") with a micro electrochemical drive and tablet PC console for one-stop service trials in a local commercial scenario. This study establishes (1) a nutritive value classifier in a low-cost consumer electronic format and (2) noninvasive diagnostic technology for Se supplementation.


Assuntos
Técnicas Eletroquímicas , Selênio , Selênio/urina , Selênio/química , Animais , Técnicas Eletroquímicas/instrumentação , Ratos , Masculino , Limite de Detecção , Suplementos Nutricionais/análise , Ratos Sprague-Dawley
6.
Anal Chem ; 96(17): 6847-6852, 2024 04 30.
Artigo em Inglês | MEDLINE | ID: mdl-38639290

RESUMO

Organic photoelectrochemical transistor (OPECT) has shown substantial potential in the development of next-generation bioanalysis yet is limited by the either-or situation between the photoelectrode types and the channel types. Inspired by the dual-photoelectrode systems, we propose a new architecture of dual-engine OPECT for enhanced signal modulation and its biosensing application. Exemplified by incorporating the CdS/Bi2S3 photoanode and Cu2O photocathode within the gate-source circuit of Ag/AgCl-gated poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) channel, the device shows enhanced modulation capability and larger transconductance (gm) against the single-photoelectrode ones. Moreover, the light irritation upon the device effectively shifts the peak value of gm to zero gate voltage without degradation and generates larger current steps that are advantageous for the sensitive bioanalysis. Based on the as-developed dual-photoelectrode OPECT, target-mediated recycling and etching reactions are designed upon the CdS/Bi2S3, which could result in dual signal amplification and realize the sensitive microRNA-155 biodetection with a linear range from 1 fM to 100 pM and a lower detection limit of 0.12 fM.


Assuntos
Cobre , Técnicas Eletroquímicas , Sulfetos , Tiofenos , Técnicas Eletroquímicas/instrumentação , Cobre/química , Sulfetos/química , Compostos de Cádmio/química , Técnicas Biossensoriais/instrumentação , Bismuto/química , Transistores Eletrônicos , Processos Fotoquímicos , Poliestirenos/química , MicroRNAs/análise , Eletrodos , Polímeros/química
7.
Anal Chem ; 96(22): 9218-9227, 2024 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-38781682

RESUMO

In situ monitoring of cell secretions and communications plays a fundamental role in screening of disease diagnostic biomarkers and drugs. Quantitative detection of cell secretions and monitoring of intercellular communication have been separately reported, which often rely on target labeling or complex pretreatment steps, inevitably causing damage to the target. Simultaneous in situ noninvasive detection of cell secretions and monitoring of intercellular communication are challenging and have never been reported. Herein, we smartly developed a portable device for in situ label-free monitoring of cell secretions and communications with fluorescence and ion-transport-based nanochannel electrochemistry. Based on the dual signal mode, a series of nonelectroactive secretions were sensitively and accurately quantified. The detection limits for VEGF, MUC1, and ATP were 3.84 pg/mL, 32.7 pg/mL, and 47.4 fM (3σ/S), which were 1/3.9, 1/1.1, and 1/41 of those of commercial ELISA kits, respectively. More interestingly, under the released secretions, the gradual opening of the nanochannel connected the two cells in the left and right chambers of the device; thus, the secretion mediated intercellular communication can be monitored. The proposed platform may provide a promising tool for understanding the mechanism of intercellular communication and discovering new therapeutic targets.


Assuntos
Técnicas Eletroquímicas , Humanos , Técnicas Eletroquímicas/instrumentação , Trifosfato de Adenosina/análise , Trifosfato de Adenosina/metabolismo , Mucina-1/análise , Mucina-1/metabolismo , Comunicação Celular , Fator A de Crescimento do Endotélio Vascular/análise , Fator A de Crescimento do Endotélio Vascular/metabolismo , Fluorescência , Limite de Detecção
8.
Anal Chem ; 96(19): 7772-7779, 2024 05 14.
Artigo em Inglês | MEDLINE | ID: mdl-38698542

RESUMO

There is growing attention focused toward the problems of ecological sustainability and food safety raised from the abuse of herbicides, which underscores the need for the development of a portable and reliable sensor for simple, rapid, and user-friendly on-site analysis of herbicide residues. Herein, a novel multifunctional hydrogel composite is explored to serve as a portable and flexible sensor for the facile and efficient analysis of atrazine (ATZ) residues. The hydrogel electrode is fabricated by doping graphite-phase carbon nitride (g-C3N4) into the aramid nanofiber reinforced poly(vinyl alcohol) hydrogel via a simple solution-casting procedure. Benefiting from the excellent electroactivity and large specific surface area of the solid nanoscale component, the prepared hydrogel sensor is capable of simple, rapid, and sensitive detection of ATZ with a detection limit down to 0.002 ng/mL and per test time less than 1 min. After combination with a smartphone-controlled portable electrochemical analyzer, the flexible sensor exhibited satisfactory analytical performance for the ATZ assay. We further demonstrated the applications of the sensor in the evaluation of the ATZ residues in real water and soil samples as well as the user-friendly on-site point-of-need detection of ATZ residues on various agricultural products. We envision that this flexible and portable sensor will open a new avenue on the development of next-generation analytical tools for herbicide monitoring in the environment and agricultural products.


Assuntos
Atrazina , Técnicas Eletroquímicas , Herbicidas , Hidrogéis , Atrazina/análise , Herbicidas/análise , Hidrogéis/química , Técnicas Eletroquímicas/instrumentação , Grafite/química , Eletrodos , Limite de Detecção , Nitrilas/química , Nitrilas/análise , Nanofibras/química , Poluentes Químicos da Água/análise
9.
Anal Chem ; 96(31): 12739-12747, 2024 08 06.
Artigo em Inglês | MEDLINE | ID: mdl-39056189

RESUMO

The functionalization of metal-organic frameworks (MOFs) with organic small molecules by in situ postsynthetic modification has garnered considerable attention. However, the precise engineering of recognition sites using this method remains rarely explored in optically controlled bioelectronics. Herein, employing the Schiff base reaction to embed the small molecule (THBA) into a Zr-MOF, we fabricated a hydroxyl-rich MOF on the surface of titanium dioxide nanorod arrays (U6H@TiO2 NRs) to develop light-sensitive gate electrodes with tailored recognition capabilities. The U6H@TiO2 NR gate electrodes were integrated into organic photoelectrochemical transistor (OPECT) sensing systems to tailor a sensitive device for bilirubin (I-Bil) detection. In the presence of I-Bil, coordination effects, hydrogen bonding, and π-π interactions facilitated strong binding between U6H@TiO2 NRs and the target I-Bil. The electron-donating property of I-Bil influenced the gate voltage, enabling precise control of the channel status and modulation of the channel current. The OPECT device exhibited exceptional analytical performance toward I-Bil with wide linearity ranging from 1 × 10-16 to 1 × 10-9 M and a low limit detection of 0.022 fM. Leveraging the versatility of small molecules for boosting the functionalization of materials, this work demonstrates the great potential of the small molecule family for OPECT bioanalysis and holds promise for the advancement of OPECT sensors.


Assuntos
Bilirrubina , Técnicas Eletroquímicas , Estruturas Metalorgânicas , Titânio , Estruturas Metalorgânicas/química , Bilirrubina/análise , Técnicas Eletroquímicas/instrumentação , Titânio/química , Limite de Detecção , Transistores Eletrônicos , Humanos , Eletrodos , Processos Fotoquímicos , Nanotubos/química , Zircônio/química
10.
Anal Chem ; 96(24): 9780-9789, 2024 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-38848497

RESUMO

Dental caries is one of the most common diseases affecting more than 2 billion people's health worldwide. In a clinical setting, it is challenging to predict and proactively guard against dental cavities prior to receiving a confirmed diagnosis. Streptococcus mutans (S. mutans) in saliva has been recognized as the main causative bacterial agent that causes dental caries. High sensitivity, good selectivity, and a wide detection range are incredibly important factors to affect S. mutans detection in practical applications. In this study, we present a portable saliva biosensor designed for the early detection of S. mutans with the potential to predict the occurrence of dental cavities. The biosensor was fabricated using a S. mutans-specific DNA aptamer and S. mutans-imprinted polymers. Methylene blue was utilized as a redox probe in the sensor to generate current signals for analysis. When S. mutans enters complementarily S. mutans cavities, it blocks electron transfer between methylene blue and the electrode, resulting in decreases in the reduction current signal. The signal variations are associated with S. mutans concentrations that are useful for quantitative analysis. The linear detection range of S. mutans is 102-109 cfu mL-1, which covers the critical concentration of high caries risk. The biosensor exhibited excellent selectivity toward S. mutans in the presence of other common oral bacteria. The biosensor's wide detection range, excellent selectivity, and low limit of detection (2.6 cfu mL-1) are attributed to the synergistic effect of aptamer and S. mutans-imprinted polymers. The sensor demonstrates the potential to prevent dental caries.


Assuntos
Aptâmeros de Nucleotídeos , Técnicas Biossensoriais , Cárie Dentária , Saliva , Streptococcus mutans , Saliva/microbiologia , Saliva/química , Streptococcus mutans/isolamento & purificação , Técnicas Biossensoriais/instrumentação , Cárie Dentária/diagnóstico , Cárie Dentária/microbiologia , Aptâmeros de Nucleotídeos/química , Humanos , Azul de Metileno/química , Técnicas Eletroquímicas/instrumentação
11.
Anal Chem ; 96(40): 15941-15949, 2024 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-39313954

RESUMO

Creatinine is an important biomarker of kidney function and muscular metabolism. In this paper, we developed the ß-lead dioxide/single-walled carbon nanotube (ß-PbO2/CNT) and the ß-PbO2/CNT ion-selective electrode (ß-PbO2/CNT/ISE), which were used as highly sensitive potentiometric sensors for creatinine detection. The fabricated electrodes exhibited highly pH-sensitive characteristics due to the synergistic effect of the electrochemical properties of CNT and ß-PbO2. Moreover, an ammonium-ion-selective membrane coating allowed the ß-PbO2/CNT electrode to be NH4+-selective for direct detection of the ammonium ion. By exploiting the electrochemical characteristics of these electrodes, the creatinine assay was established through the one-step selective conversion of creatinine by creatinine deiminase, in which the OH- and NH4+ generated by the enzymatic reaction were detected using ß-PbO2/CNT and ß-PbO2/CNT/ISE electrodes as pH- and NH4+-responsive sensors, respectively. The total creatinine assay can be completed within ∼5 min. The assay results from ß-PbO2/CNT and ß-PbO2/CNT/ISE showed excellent sensitivity values of -75.56 and 64.62 mV in the detection range of 10-400 µM with a fast response (20 s), and the limits of detection were calculated to be 0.06 and 0.13 µM, respectively. Moreover, the developed creatinine sensor showed high selectivity against 11 interfering bio/chemical species with negligible interferences (selectivity coefficient <10-4) and excellent repeatability (>97% within 25 cycles) and long-term stability for 4 weeks of storage. In addition, the feasibility and practicality of the device were successfully demonstrated in human serum tests, with recoveries of 95-104% for PbO2/CNT and 92-110% for PbO2/CNT/ISE.


Assuntos
Creatinina , Técnicas Eletroquímicas , Eletrodos , Chumbo , Nanotubos de Carbono , Óxidos , Nanotubos de Carbono/química , Creatinina/sangue , Creatinina/análise , Técnicas Eletroquímicas/instrumentação , Chumbo/análise , Humanos , Óxidos/química , Concentração de Íons de Hidrogênio , Limite de Detecção , Técnicas Biossensoriais/instrumentação
12.
Anal Chem ; 96(36): 14604-14611, 2024 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-39190775

RESUMO

Uranium is a nuclear fuel but also a hazardous contaminant due to its radioactivity and chemical toxicity. To prevent and mitigate its potential threat, the accurate monitoring of ultratrace uranium (orders of magnitude of pg g-1) in practical environmental samples has become an important scientific problem. To meet this challenge, we developed an efficient electrochemiluminescence (ECL) UO22+ detection device by a novel dual-enhancement mechanism. In detail, poly[(9,9-dioctylfuor-enyl-2,7-diyl)-alt-co-(1,4-benzo-{2,1,3}-thiadiazole)] polymer dots (Pdots) are modified by the UO22+ DNA aptamer, and rhodamine B (RhB) is combined with dsDNA to quench the ECL signal via a resonance energy transfer (RET) process. UO22+ can cut off the DNA aptamer to release RhB, which generates an ECL enhancement process, and then, UO22+ continuously combines with the DNA chain, inducing another ECL enhancement by the RET process from UO22+ to Pdots. This device achieves an ultralow detection limit (12 pg L-1) and a wide linear range (113 pg L-1-11.3 mg L-1), which can successfully give accurate determination results to the ultratrace uranium in biosamples (<1 pg g-1) to monitor the uranium simulation of fish. This work presents an efficient strategy for ultratrace uranium determination in the environment, highlighting its significance in public health and environmental fields.


Assuntos
Técnicas Eletroquímicas , Peixes , Medições Luminescentes , Urânio , Urânio/análise , Animais , Técnicas Eletroquímicas/instrumentação , Técnicas Eletroquímicas/métodos , Unhas/química , Aptâmeros de Nucleotídeos/química , Humanos , Polímeros/química , Limite de Detecção , Pontos Quânticos/química
13.
Anal Chem ; 96(39): 15780-15788, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-39303167

RESUMO

A smartphone-mediated self-powered biosensor is fabricated for miRNA-141 detection based on the CRISPR/Cas12a cross-cutting technique and a highly efficient nanozyme. As a novel nanozyme and a signal-amplified coreaction accelerator, the AuPtPd@GDY nanozyme exhibits an excellent ability to catalyze cascade color reactions and high conductivity to enhance the electrochemical signal for miRNA-141 assays. After CRISPR/Cas12a cross-cutting of S2-glucose oxidase (S2-GOD), the electrochemical signal is weakened, and miRNA-141 is detected by monitoring the decrease in the signal. On the other hand, a cascade reaction among glucose, H2O2, and TMB is catalyzed by GOD and AuPtPd@GDY, respectively, resulting in a color change of the solution, which senses miRNA-141. The self-powered biosensor enables value-assisted and visual detection of miRNA-141 with limits of detection of 3.1 and 15 aM, respectively. Based on the dual-modal self-powered sensing system, a smartphone-mediated "all-in-one" biosensing chip is designed to achieve the real-time and intelligent monitoring of miRNA-141. This work provides a new approach to design multifunctional biosensors to realize the visualization and portable detection of tumor biomarkers.


Assuntos
Técnicas Biossensoriais , MicroRNAs , Smartphone , MicroRNAs/análise , Humanos , Glucose Oxidase/metabolismo , Glucose Oxidase/química , Técnicas Eletroquímicas/métodos , Técnicas Eletroquímicas/instrumentação , Ouro/química , Limite de Detecção , Paládio/química , Sistemas CRISPR-Cas
14.
Anal Chem ; 96(23): 9317-9324, 2024 06 11.
Artigo em Inglês | MEDLINE | ID: mdl-38818541

RESUMO

Inaccurate or cumbersome clinical pathogen diagnosis between Gram-positive bacteria (G+) and Gram-negative (G-) bacteria lead to delayed clinical therapeutic interventions. Microelectrode-based electrochemical sensors exhibit the significant advantages of rapid response and minimal sample consumption, but the loading capacity and discrimination precision are weak. Herein, we develop reversible fusion-fission MXene-based fiber microelectrodes for G+/G- bacteria analysis. During the fissuring process, the spatial utilization, loading capacity, sensitivity, and selectivity of microelectrodes were maximized, and polymyxin B and vancomycin were assembled for G+/G- identification. The surface-tension-driven reversible fusion facilitated its reusability. A deep learning model was further applied for the electrochemical impedance spectroscopy (EIS) identification in diverse ratio concentrations of G+ and G- of (1:100-100:1) with higher accuracy (>93%) and gave predictable detection results for unknown samples. Meanwhile, the as-proposed sensing platform reached higher sensitivity toward E. coli (24.3 CFU/mL) and S. aureus (37.2 CFU/mL) in 20 min. The as-proposed platform provides valuable insights for bacterium discrimination and quantification.


Assuntos
Microeletrodos , Bactérias Gram-Positivas/isolamento & purificação , Bactérias Gram-Negativas/isolamento & purificação , Escherichia coli/isolamento & purificação , Staphylococcus aureus/isolamento & purificação , Técnicas Eletroquímicas/instrumentação , Vancomicina/farmacologia , Antibacterianos/farmacologia , Antibacterianos/análise , Polimixina B/química , Polimixina B/farmacologia , Espectroscopia Dielétrica
15.
Anal Chem ; 96(32): 13070-13077, 2024 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-39088735

RESUMO

The advent of wearable sensors heralds a transformation in the continuous, noninvasive analysis of biomarkers critical for disease diagnosis and fitness management. Yet, their advancement is hindered by the functional challenges affiliated with their active sensing analysis layer. Predominantly due to suboptimal intrinsic material properties and inconsistent dispersion leading to aggregation, thus compromising sensor repeatability and performance. Herein, an innovative approach to the functionalization of wearable electrochemical sensors was introduced, specifically addressing these limitations. The method involves a proton-induced self-assembly technique at the organic-water (O/W) interface, facilitating the generation of biomarker-responsive films. This research offers flexible, breathable sensor capable of real-time precision tracking l-cysteine (l-Cys) precision tracking. Utilizing an activation mechanism for Prussian blue nanoparticles by hydrogen peroxide, the catalytic core exhibits a specific response to l-Cys. The implications of this study refine the fabrication of film-based analysis electrodes for wearable sensing applications and the broader utilization of two-dimensional materials in functional-specific response films. Findings illuminate the feasibility of this novel strategy for precise biomarker tracking and extend to pave the way for constructing high-performance electrocatalytic analytical interfaces.


Assuntos
Cisteína , Técnicas Eletroquímicas , Ferrocianetos , Dispositivos Eletrônicos Vestíveis , Cisteína/análise , Cisteína/química , Humanos , Técnicas Eletroquímicas/instrumentação , Técnicas Eletroquímicas/métodos , Ferrocianetos/química , Peróxido de Hidrogênio/análise , Peróxido de Hidrogênio/química , Eletrodos , Técnicas Biossensoriais , Biomarcadores/análise , Nanopartículas/química
16.
Anal Chem ; 96(42): 16676-16685, 2024 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-39392225

RESUMO

Wearable sensors enable the noninvasive continuous analysis of biofluid, which is of great importance for healthcare monitoring. In this work, a wearable sensor was seamlessly integrated with a microfluidic chip which was prepared by a three-dimensional printing technology for noninvasive and multiplexed analysis of metabolite and electrolytes in human sweat. The microfluidic chip could enable rapid sampling of sweat, which avoids the sweat evaporation and contamination. Using a Zn metal-organic framework as a sacrificial template, the hexagonal rod-shaped porous carbon nanorod (PCN) with high porosity, a large specific surface area, and excellent conductivity was synthesized and exhibited the robust electrocatalytic ability of uric acid (UA) oxidation. Therefore, the PCN-based sensor showed high sensitivity and good selectivity of UA with a wide linear range of 10-200 µM and a low detection limit of 4.13 µM. Meanwhile, the potentiometry-based ion-selective electrode was constructed for detection of pH and K+, respectively, with good sensitivity, selectivity, reproducibility, and stability. In addition, the testing under different bending states demonstrated that mechanical deformation had little effect on the electrochemical performance of the wearable sensors. Furthermore, we evaluated the utility of the wearable sensor for multiplexed real-time analysis of UA, pH, and K+ in sweat during aerobic exercise, and the effect of the amount of consumed purine-rich foods on uric acid metabolite levels in sweat and urine was further investigated. The relationship between urine UA and sweat UA was obtained. Overall, this wearable sensor enables multiple electrolyte and metabolite analysis in different noninvasive biofluids, suggesting its potential application in personalized disease prevention.


Assuntos
Técnicas Eletroquímicas , Estruturas Metalorgânicas , Suor , Ácido Úrico , Dispositivos Eletrônicos Vestíveis , Suor/química , Suor/metabolismo , Humanos , Ácido Úrico/análise , Ácido Úrico/urina , Porosidade , Técnicas Eletroquímicas/instrumentação , Estruturas Metalorgânicas/química , Eletrólitos/química , Carbono/química , Potássio/análise , Potássio/urina , Concentração de Íons de Hidrogênio
17.
Anal Chem ; 96(26): 10630-10638, 2024 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-38912708

RESUMO

Paper-based lateral flow immunoassays (LFIAs) are cost-effective, portable, and simple methods for detection of diverse analytes, which however only provide qualitative or semiquantitative results and lack sufficient sensitivity. A combination of LFIA and electrochemical detection, namely, electrochemical lateral flow immunoassay (eLFIA), enables quantitative detection of analytes with high sensitivity, but the integration of external electrodes makes the system relatively expensive and unstable. Herein, the working, counter, and reference electrodes were prepared directly on the nitrocellulose membrane using screen printing, which remarkably simplified the structure of eLFIA and decreased the cost. Moreover, a horseradish peroxidase (HRP)-based electrochemical signal amplification strategy was used for further increasing the analytical sensitivity. HRP captured on the working electrode can catalyze the oxidation of tetramethylbenzidine (TMB) to form the TMB-TMBox precipitate on the electrode surface, which as an electrochemically active product can output an amplified current for quantification. We demonstrated that the eLFIA could detect low-abundant inflammatory biomarkers in human plasma samples with limits of detection of 0.17 and 0.54 pg mL-1 for interleukin-6 and C-reactive protein, respectively. Finally, a fully portable system was fabricated by integrating eLFIA with a flexible and wireless electrochemical workstation, realizing the point-of-care detection of interleukin-6.


Assuntos
Biomarcadores , Proteína C-Reativa , Técnicas Eletroquímicas , Eletrodos , Interleucina-6 , Humanos , Imunoensaio/métodos , Imunoensaio/instrumentação , Técnicas Eletroquímicas/instrumentação , Biomarcadores/sangue , Biomarcadores/análise , Interleucina-6/sangue , Interleucina-6/análise , Proteína C-Reativa/análise , Peroxidase do Rábano Silvestre/química , Peroxidase do Rábano Silvestre/metabolismo , Limite de Detecção , Inflamação/sangue , Inflamação/diagnóstico , Benzidinas
18.
Small ; 20(38): e2401148, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38801400

RESUMO

Electrochemical paper-based microfluidics has attracted much attention due to the promise of transforming point-of-care diagnostics by facilitating quantitative analysis with low-cost and portable analyzers. Such devices harness capillary flow to transport samples and reagents, enabling bioassays to be executed passively. Despite exciting demonstrations of capillary-driven electrochemical tests, conventional methods for fabricating electrodes on paper impede capillary flow, limit fluidic pathways, and constrain accessible device architectures. This account reviews recent developments in paper-based electroanalytical devices and offers perspective by revisiting key milestones in lateral flow tests and paper-based microfluidics engineering. The study highlights the benefits associated with electrochemical sensing and discusses how the detection modality can be leveraged to unlock novel functionalities. Particular focus is given to electrofluidic platforms that embed electrodes into paper for enhanced biosensing applications. Together, these innovations pave the way for diagnostic technologies that offer portability, quantitative analysis, and seamless integration with digital healthcare, all without compromising the simplicity of commercially available rapid diagnostic tests.


Assuntos
Microfluídica , Papel , Microfluídica/métodos , Humanos , Técnicas Eletroquímicas/métodos , Técnicas Eletroquímicas/instrumentação , Técnicas Biossensoriais/instrumentação , Técnicas Biossensoriais/métodos
19.
Small ; 20(22): e2309357, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38102797

RESUMO

Ensuring an appropriate nitrite level in food is essential to keep the body healthy. However, it still remains a huge challenge to offer a portable and low-cost on-site food nitrite analysis without any expensive equipment. Herein, a portable integrated electrochemical sensing system (IESS) is developed to achieve rapid on-site nitrite detection in food, which is composed of a low-cost disposable microfluidic electrochemical patch for few-shot nitrite detection, and a reusable smartphone-assisted electronic device based on self-designed circuit board for signal processing and wireless transmission. The electrochemical patch based on MXene-Ti3C2Tx/multiwalled carbon nanotubes-cyanocobalamin (MXene/MWCNTs-VB12)-modified working electrode achieves high sensitivity of 10.533 µA mm-1 and low nitrite detection limit of 4.22 µm owing to strong electron transfer ability of hybrid MXene/MWCNTs conductive matrix and high nitrite selectivity of VB12 bionic enzyme-based ion-selective layer. Moreover, the portable IESS can rapidly collect pending testing samples through a microfluidic electrochemical patch within 1.0 s to conduct immediate nitrite analysis, and then wirelessly transmit data from a signal-processing electronic device to a smartphone via Bluetooth module. Consequently, this proposed portable IESS demonstrates rapid on-site nitrite analysis and wireless data transmission within one palm-sized electronic device, which would pave a new avenue in food safety and personal bespoke therapy.


Assuntos
Técnicas Eletroquímicas , Nitritos , Nitritos/análise , Técnicas Eletroquímicas/métodos , Técnicas Eletroquímicas/instrumentação , Nanotubos de Carbono/química , Análise de Alimentos/instrumentação , Análise de Alimentos/métodos , Eletrodos , Limite de Detecção , Técnicas Biossensoriais/métodos , Técnicas Biossensoriais/instrumentação
20.
Anal Biochem ; 692: 115578, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38801938

RESUMO

A biomarker is a molecular indicator that can be used to identify the presence or severity of a disease. It may be produced due to biochemical or molecular changes in normal biological processes. In some cases, the presence of a biomarker itself is an indication of the disease, while in other cases, the elevated or depleted level of a particular protein or chemical substance aids in identifying a disease. Biomarkers indicate the progression of the disease in response to therapeutic interventions. Identifying these biomarkers can assist in diagnosing the disease early and providing proper therapeutic treatment. In recent years, wearable electrochemical (EC) biosensors have emerged as an important tool for early detection due to their excellent selectivity, low cost, ease of fabrication, and improved sensitivity. There are several challenges in developing a fully integrated wearable sensor, such as device miniaturization, high power consumption, incorporation of a power source, and maintaining the integrity and durability of the biomarker for long-term continuous monitoring. This review covers the recent advancements in the fabrication techniques involved in device development, the types of sensing platforms utilized, different materials used, challenges, and future developments in the field of wearable biosensors.


Assuntos
Biomarcadores , Técnicas Biossensoriais , Técnicas Eletroquímicas , Dispositivos Eletrônicos Vestíveis , Técnicas Biossensoriais/instrumentação , Técnicas Biossensoriais/métodos , Biomarcadores/análise , Humanos , Técnicas Eletroquímicas/instrumentação , Técnicas Eletroquímicas/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA