Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 484
Filtrar
1.
J Biol Chem ; 300(4): 107172, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38499151

RESUMO

The recently discovered interaction between Presenilin 1 (PS1), a catalytic subunit of γ-secretase responsible for generating amyloid-ß peptides, and GLT-1, a major glutamate transporter in the brain (EAAT2), provides a mechanistic link between these two key factors involved in Alzheimer's disease (AD) pathology. Modulating this interaction can be crucial to understand the consequence of such crosstalk in AD context and beyond. However, the interaction sites between these two proteins are unknown. Herein, we utilized an alanine scanning approach coupled with FRET-based fluorescence lifetime imaging microscopy to identify the interaction sites between PS1 and GLT-1 in their native environment within intact cells. We found that GLT-1 residues at position 276 to 279 (TM5) and PS1 residues at position 249 to 252 (TM6) are crucial for GLT-1-PS1 interaction. These results have been cross validated using AlphaFold Multimer prediction. To further investigate whether this interaction of endogenously expressed GLT-1 and PS1 can be prevented in primary neurons, we designed PS1/GLT-1 cell-permeable peptides (CPPs) targeting the PS1 or GLT-1 binding site. We used HIV TAT domain to allow for cell penetration which was assayed in neurons. First, we assessed the toxicity and penetration of CPPs by confocal microscopy. Next, to ensure the efficiency of CPPs, we monitored the modulation of GLT-1-PS1 interaction in intact neurons by fluorescence lifetime imaging microscopy. We saw significantly less interaction between PS1 and GLT-1 with both CPPs. Our study establishes a new tool to study the functional aspect of GLT-1-PS1 interaction and its relevance in normal physiology and AD models.


Assuntos
Transportador 2 de Aminoácido Excitatório , Presenilina-1 , Animais , Humanos , Camundongos , Doença de Alzheimer/genética , Doença de Alzheimer/patologia , Secretases da Proteína Precursora do Amiloide/metabolismo , Secretases da Proteína Precursora do Amiloide/genética , Sítios de Ligação , Transportador 2 de Aminoácido Excitatório/química , Transportador 2 de Aminoácido Excitatório/genética , Transportador 2 de Aminoácido Excitatório/metabolismo , Transferência Ressonante de Energia de Fluorescência , Células HEK293 , Neurônios/metabolismo , Presenilina-1/química , Presenilina-1/genética , Presenilina-1/metabolismo , Ligação Proteica , Peptídeos/metabolismo
2.
J Biol Chem ; 299(1): 102793, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36509140

RESUMO

Astrocytic excitatory amino acid transporter 2 (EAAT2) plays a major role in removing the excitatory neurotransmitter L-glutamate (L-Glu) from synaptic clefts in the forebrain to prevent excitotoxicity. Polyunsaturated fatty acids such as docosahexaenoic acid (DHA, 22:6 n-3) enhance synaptic transmission, and their target molecules include EAATs. Here, we aimed to investigate the effect of DHA on EAAT2 and identify the key amino acid for DHA/EAAT2 interaction by electrophysiological recording of L-Glu-induced current in Xenopus oocytes transfected with EAATs, their chimeras, and single mutants. DHA transiently increased the amplitude of EAAT2 but tended to decrease that of excitatory amino acid transporter subtype 1 (EAAT1), another astrocytic EAAT. Single mutation of leucine (Leu) 434 to alanine (Ala) completely suppressed the augmentation by DHA, while mutation of EAAT1 Ala 435 (corresponding to EAAT2 Leu434) to Leu changed the effect from suppression to augmentation. Other polyunsaturated fatty acids (docosapentaenoic acid, eicosapentaenoic acid, arachidonic acid, and α-linolenic acid) similarly augmented the EAAT2 current and suppressed the EAAT1 current. Finally, our docking analysis suggested the most stable docking site is the lipid crevice of EAAT2, in close proximity to the L-Glu and sodium binding sites, suggesting that the DHA/Leu434 interaction might affect the elevator-like slide and/or the shapes of the other binding sites. Collectively, our results highlight a key molecular detail in the DHA-induced regulation of synaptic transmission involving EAATs.


Assuntos
Ácidos Docosa-Hexaenoicos , Transportador 2 de Aminoácido Excitatório , Transmissão Sináptica , Xenopus laevis , Ácidos Docosa-Hexaenoicos/metabolismo , Transportador 2 de Aminoácido Excitatório/genética , Transportador 2 de Aminoácido Excitatório/metabolismo , Ácido Glutâmico/metabolismo , Leucina , Mutação , Xenopus laevis/metabolismo
3.
J Neuroinflammation ; 21(1): 130, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38750510

RESUMO

Epidemiological studies have unveiled a robust link between exposure to repetitive mild traumatic brain injury (r-mTBI) and elevated susceptibility to develop neurodegenerative disorders, notably chronic traumatic encephalopathy (CTE). The pathogenic lesion in CTE cases is characterized by the accumulation of hyperphosphorylated tau in neurons around small cerebral blood vessels which can be accompanied by astrocytes that contain phosphorylated tau, the latter termed tau astrogliopathy. However, the contribution of tau astrogliopathy to the pathobiology and functional consequences of r-mTBI/CTE or whether it is merely a consequence of aging remains unclear. We addressed these pivotal questions by utilizing a mouse model harboring tau-bearing astrocytes, GFAPP301L mice, subjected to our r-mTBI paradigm. Despite the fact that r-mTBI did not exacerbate tau astrogliopathy or general tauopathy, it increased phosphorylated tau in the area underneath the impact site. Additionally, gene ontology analysis of tau-bearing astrocytes following r-mTBI revealed profound alterations in key biological processes including immunological and mitochondrial bioenergetics. Moreover, gene array analysis of microdissected astrocytes accrued from stage IV CTE human brains revealed an immunosuppressed astroglial phenotype similar to tau-bearing astrocytes in the GFAPP301L model. Additionally, hippocampal reduction of proteins involved in water transport (AQP4) and glutamate homeostasis (GLT1) was found in the mouse model of tau astrogliopathy. Collectively, these findings reveal the importance of understanding tau astrogliopathy and its role in astroglial pathobiology under normal circumstances and following r-mTBI. The identified mechanisms using this GFAPP301L model may suggest targets for therapeutic interventions in r-mTBI pathogenesis in the context of CTE.


Assuntos
Aquaporina 4 , Astrócitos , Transportador 2 de Aminoácido Excitatório , Camundongos Transgênicos , Tauopatias , Proteínas tau , Animais , Humanos , Masculino , Camundongos , Aquaporina 4/metabolismo , Aquaporina 4/genética , Astrócitos/metabolismo , Astrócitos/patologia , Concussão Encefálica/metabolismo , Concussão Encefálica/patologia , Transportador 2 de Aminoácido Excitatório/metabolismo , Transportador 2 de Aminoácido Excitatório/genética , Transportador 2 de Aminoácido Excitatório/biossíntese , Camundongos Endogâmicos C57BL , Fenótipo , Proteínas tau/metabolismo , Proteínas tau/genética , Tauopatias/metabolismo , Tauopatias/patologia , Tauopatias/genética
4.
Horm Behav ; 162: 105548, 2024 06.
Artigo em Inglês | MEDLINE | ID: mdl-38636205

RESUMO

Thyroid hormones are crucial for brain development and their deficiency during fetal and postnatal periods can lead to mood and cognitive disorders. We aimed to examine the consequences of thyroid hormone deficiency on anxiety-related behaviors and protein expression of hippocampal glutamate transporters in congenital hypothyroid male offspring rats. Possible beneficial effects of treadmill exercise have also been examined. Congenital hypothyroidism was induced by adding propylthiouracil (PTU) to drinking water of pregnant Wistar rats from gestational day 6 until the end of the weaning period (postnatal day 28). Next, following 4 weeks of treadmill exercise (5 days per week), anxiety-related behaviors were examined using elevated plus maze (EPM) and light/dark box tests. Thereafter, protein expression of astrocytic (GLAST and GLT-1) and neuronal (EAAC1) glutamate transporters were measured in the hippocampus by immunoblotting. Hypothyroid rats showed decreased anxiety-like behavior, as measured by longer time spent in the open arms of the EPM and in the light area of the light/dark box, compared to control rats. Hypothyroid rats had significantly higher GLAST and GLT-1 and lower EAAC1 protein levels in the hippocampus than did the euthyroid rats. Following exercise, anxiety levels decreased in the euthyroid group while protein expression of EAAC1 increased and returned to normal levels in the hypothyroid group. Our findings indicate that thyroid hormone deficiency was associated with alterations in protein expression of glutamate transporters in the hippocampus. Up-regulation of hippocampal GLAST and GLT-1 could be at least one of the mechanisms associated with the anxiolytic effects of congenital hypothyroidism.


Assuntos
Ansiedade , Hipotireoidismo Congênito , Transportador 2 de Aminoácido Excitatório , Hipocampo , Ratos Wistar , Animais , Masculino , Hipocampo/metabolismo , Ansiedade/metabolismo , Ansiedade/etiologia , Ratos , Feminino , Hipotireoidismo Congênito/metabolismo , Gravidez , Transportador 2 de Aminoácido Excitatório/metabolismo , Transportador 2 de Aminoácido Excitatório/genética , Hormônios Tireóideos/metabolismo , Transportador 1 de Aminoácido Excitatório/metabolismo , Transportador 1 de Aminoácido Excitatório/genética , Transportador 3 de Aminoácido Excitatório/metabolismo , Transportador 3 de Aminoácido Excitatório/genética , Comportamento Animal/fisiologia , Propiltiouracila , Sistema X-AG de Transporte de Aminoácidos/metabolismo , Sistema X-AG de Transporte de Aminoácidos/genética , Efeitos Tardios da Exposição Pré-Natal/metabolismo
5.
Neurochem Res ; 48(9): 2847-2856, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37178383

RESUMO

Glial cells give rise to glioblastoma multiform as a primary brain tumor. In glioblastomas, neurons are destroyed via excitotoxicity which is the accumulation of excess glutamate in synaptic cavity. Glutamate Transporter 1 (GLT-1) is the main transporter that absorbs the excessive glutamate. Sirtuin 4 (SIRT4) was shown to have a potential protective role against excitotoxicity in previous studies. In this study, the regulation of dynamic GLT-1 expression by SIRT4 was analyzed in glia (immortalized human astrocytes) and glioblastoma (U87) cells. The expression of GLT-1 dimers and trimers were reduced and the ubiquitination of GLT-1 was increased in glioblastoma cells when SIRT4 was silenced; however GLT-1 monomer was not affected. In glia cells, SIRT4 reduction did not affect GLT-1 monomer, dimer, trimer expression or the ubiquitination of GLT-1. The phosphorylation of Nedd4-2 and the expression of PKC did not change in glioblastoma cells when SIRT4 was silenced but increased in glia cells. We also showed that SIRT4 deacetylates PKC in glia cells. In addition, GLT-1 was shown to be deacetylated by SIRT4 which might be a priority for ubiquitination. Therefore, we conclude that GLT-1 expression is regulated differently in glia and glioblastoma cells. SIRT4 activators or inhibitors of ubiquitination may be used to prevent excitotoxicity in glioblastomas.


Assuntos
Transportador 2 de Aminoácido Excitatório , Glioblastoma , Sirtuínas , Humanos , Astrócitos/metabolismo , Transportador 2 de Aminoácido Excitatório/genética , Glioblastoma/metabolismo , Ácido Glutâmico/metabolismo , Proteínas Mitocondriais/metabolismo , Neurônios/metabolismo , Sirtuínas/metabolismo , Ubiquitinação , Proteólise
6.
Metab Brain Dis ; 38(1): 1-16, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36173507

RESUMO

Glutamate is the major excitatory neurotransmitter in the central nervous system (CNS). Excitatory amino acid transporters (EAATs) have important roles in the uptake of glutamate and termination of glutamatergic transmission. Up to now, five EAAT isoforms (EAAT1-5) have been identified in mammals. The main focus of this review is EAAT2. This protein has an important role in the pathoetiology of epilepsy. De novo dominant mutations, as well as inherited recessive mutation in this gene, have been associated with epilepsy. Moreover, dysregulation of this protein is implicated in a range of neurological diseases, namely amyotrophic lateral sclerosis, alzheimer's disease, parkinson's disease, schizophrenia, epilepsy, and autism. In this review, we summarize the role of EAAT2 in epilepsy and other neurological disorders, then provide an overview of the therapeutic modulation of this protein.


Assuntos
Epilepsia , Esquizofrenia , Animais , Humanos , Transportador 2 de Aminoácido Excitatório/genética , Transportador 2 de Aminoácido Excitatório/metabolismo , Epilepsia/genética , Esquizofrenia/metabolismo , Transporte Biológico , Ácido Glutâmico/metabolismo , Mamíferos/metabolismo
7.
J Biol Chem ; 297(6): 101372, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34756885

RESUMO

Chronic exposure to high levels of manganese (Mn) leads to manganism, a neurological disorder with similar symptoms to those inherent to Parkinson's disease. However, the underlying mechanisms of this pathological condition have yet to be established. Since the human excitatory amino acid transporter 2 (EAAT2) (glutamate transporter 1 in rodents) is predominantly expressed in astrocytes and its dysregulation is involved in Mn-induced excitotoxic neuronal injury, characterization of the mechanisms that mediate the Mn-induced impairment in EAAT2 function is crucial for the development of novel therapeutics against Mn neurotoxicity. Repressor element 1-silencing transcription factor (REST) exerts protective effects in many neurodegenerative diseases. But the effects of REST on EAAT2 expression and ensuing neuroprotection are unknown. Given that the EAAT2 promoter contains REST binding sites, the present study investigated the role of REST in EAAT2 expression at the transcriptional level in astrocytes and Mn-induced neurotoxicity in an astrocyte-neuron coculture system. The results reveal that astrocytic REST positively regulates EAAT2 expression with the recruitment of an epigenetic modifier, cAMP response element-binding protein-binding protein/p300, to its consensus binding sites in the EAAT2 promoter. Moreover, astrocytic overexpression of REST attenuates Mn-induced reduction in EAAT2 expression, leading to attenuation of glutamate-induced neurotoxicity in the astrocyte-neuron coculture system. Our findings demonstrate that astrocytic REST plays a critical role in protection against Mn-induced neurotoxicity by attenuating Mn-induced EAAT2 repression and the ensuing excitotoxic dopaminergic neuronal injury. This indicates that astrocytic REST could be a potential molecular target for the treatment of Mn toxicity and other neurological disorders associated with EAAT2 dysregulation.


Assuntos
Neurônios Dopaminérgicos/metabolismo , Transportador 2 de Aminoácido Excitatório/metabolismo , Manganês/farmacologia , Proteínas Repressoras/fisiologia , Regulação para Cima/fisiologia , Animais , Astrócitos/metabolismo , Linhagem Celular , Neurônios Dopaminérgicos/efeitos dos fármacos , Transportador 2 de Aminoácido Excitatório/genética , Ácido Glutâmico/metabolismo , Humanos , Camundongos , Regiões Promotoras Genéticas , Sequências Reguladoras de Ácido Nucleico , Transcrição Gênica/fisiologia
8.
Glia ; 70(1): 196-214, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34716961

RESUMO

Astroglial excitatory amino acid transporter 2 (EAAT2, GLT-1, and SLC1A2) regulates the duration and extent of neuronal excitation by removing glutamate from the synaptic cleft. Hence, an impairment in EAAT2 function could lead to an imbalanced brain network excitability. Here, we investigated the functional alterations of neuronal and astroglial networks associated with the loss of function in the astroglia predominant eaat2a gene in zebrafish. We observed that eaat2a-/- mutant zebrafish larvae display recurrent spontaneous and light-induced seizures in neurons and astroglia, which coincide with an abrupt increase in extracellular glutamate levels. In stark contrast to this hyperexcitability, basal neuronal and astroglial activity was surprisingly reduced in eaat2a-/- mutant animals, which manifested in decreased overall locomotion. Our results reveal an essential and mechanistic contribution of EAAT2a in balancing brain excitability, and its direct link to epileptic seizures.


Assuntos
Epilepsia , Peixe-Zebra , Animais , Astrócitos/metabolismo , Epilepsia/metabolismo , Transportador 2 de Aminoácido Excitatório/genética , Transportador 2 de Aminoácido Excitatório/metabolismo , Ácido Glutâmico/metabolismo , Neurônios/metabolismo , Convulsões/genética , Convulsões/metabolismo , Peixe-Zebra/metabolismo
9.
Epilepsia ; 63(2): 388-401, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34961934

RESUMO

OBJECTIVE: Mutations in the gene solute carrier family member 1A2 (SLC1A2) encoding the excitatory amino acid transporter 2 (EAAT2) are associated with severe forms of epileptic encephalopathy. EAAT2 is expressed in glial cells and presynaptic nerve terminals and represents the main l-glutamate uptake carrier in the mammalian brain. It does not only function as a secondary active glutamate transporter, but also as an anion channel. How naturally occurring mutations affect these two transport functions of EAAT2 and how such alterations cause epilepsy is insufficiently understood. METHODS: Here we studied the functional consequences of three disease-associated mutations, which predict amino acid exchanges p.Gly82Arg (G82R), p.Leu85Pro (L85P), and p.Pro289Arg (P289R), by heterologous expression in mammalian cells, biochemistry, confocal imaging, and whole-cell patch-clamp recordings of EAAT2 l-glutamate transport and anion current. RESULTS: G82R and L85P exchange amino acid residues that contribute to the formation of the EAAT anion pore. They enlarge the pore diameter sufficiently to permit the passage of l-glutamate and thus function as l-glutamate efflux pathways. The mutation P289R decreases l-glutamate uptake, but increases anion currents despite a lower membrane expression. SIGNIFICANCE: l-glutamate permeability of the EAAT anion pore is an unexpected functional consequence of naturally occurring single amino acid substitutions. l-glutamate efflux through mutant EAAT2 anion channels will cause glutamate excitotoxicity and neuronal hyperexcitability in affected patients. Antagonists that selectively suppress the EAAT anion channel function could serve as therapeutic agents in the future.


Assuntos
Encefalopatias , Transportador 2 de Aminoácido Excitatório , Aminoácidos/metabolismo , Animais , Ânions/metabolismo , Transportador 2 de Aminoácido Excitatório/química , Transportador 2 de Aminoácido Excitatório/genética , Transportador 2 de Aminoácido Excitatório/metabolismo , Ácido Glutâmico/genética , Ácido Glutâmico/metabolismo , Humanos , Mamíferos/metabolismo , Mutação/genética
10.
Cereb Cortex ; 31(4): 2026-2037, 2021 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-33279960

RESUMO

Visuospatial working memory (vsWM) requires information transfer among multiple cortical regions, from primary visual (V1) to prefrontal (PFC) cortices. This information is conveyed via layer 3 glutamatergic neurons whose activity is regulated by gamma-aminobutyric acid (GABA)ergic interneurons. In layer 3 of adult human neocortex, molecular markers of glutamate neurotransmission were lowest in V1 and highest in PFC, whereas GABA markers had the reverse pattern. Here, we asked if these opposite V1-visual association cortex (V2)-posterior parietal cortex (PPC)-PFC gradients across the vsWM network are present in layer 3 of monkey neocortex, when they are established during postnatal development, and if they are specific to this layer. We quantified transcript levels of glutamate and GABA markers in layers 3 and 6 of four vsWM cortical regions in a postnatal developmental series of 30 macaque monkeys. In adult monkeys, glutamate transcript levels in layer 3 increased across V1-V2-PPC-PFC regions, whereas GABA transcripts showed the opposite V1-V2-PPC-PFC gradient. Glutamate transcripts established adult-like expression patterns earlier during postnatal development than GABA transcripts. These V1-V2-PPC-PFC gradients and developmental patterns were less evident in layer 6. These findings demonstrate that expression of glutamate and GABA transcripts differs across cortical regions and layers during postnatal development, revealing potential molecular substrates for vsWM functional maturation.


Assuntos
Ácido Glutâmico/biossíntese , Lobo Parietal/metabolismo , Córtex Pré-Frontal/metabolismo , Transcrição Gênica/fisiologia , Córtex Visual/metabolismo , Ácido gama-Aminobutírico/biossíntese , Fatores Etários , Animais , Transportador 2 de Aminoácido Excitatório/biossíntese , Transportador 2 de Aminoácido Excitatório/genética , Feminino , Neurônios GABAérgicos/metabolismo , Expressão Gênica , Ácido Glutâmico/genética , Macaca mulatta , Lobo Parietal/crescimento & desenvolvimento , Córtex Pré-Frontal/crescimento & desenvolvimento , Receptores de GABA-A/biossíntese , Receptores de GABA-A/genética , Córtex Visual/crescimento & desenvolvimento , Ácido gama-Aminobutírico/genética
11.
BMC Psychiatry ; 22(1): 171, 2022 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-35260124

RESUMO

BACKGROUND: Recent studies have shown that the excitatory amino acid transporters (EAATs) are associated with schizophrenia. The aim of this study was to investigate the relationship between the polymorphism of EAAT1 and EAAT2 genes and schizophrenia in Chinese Han population. METHODS: A total of 233 patients with schizophrenia and 342 healthy controls were enrolled. Two SNPs in EAAT1 gene (rs2269272, rs2731880) and four SNPs in EAAT2 gene (rs12360706, rs3088168, rs12294045, rs10836387) were genotyped by SNaPshot. Clinical features were collected using a self-made questionnaire. Psychotic symptoms of patients were measured by the Positive and Negative Syndrome Scale (PANSS), and patients' cognitive function was assessed by Matrics Consensus Cognitive Battery (MCCB). RESULTS: Significant difference in allelic distributions between cases and controls was confirmed at locus rs12294045 (Ρ = 0.004) of EAAT2 gene. Different genotypes of rs12294045 were associated with family history (P = 0.046), in which patients with CT genotype had higher proportion of family history of psychosis. The polymorphism of rs12294045 was related to working operational memory (LNS: P = 0.016) and verbal learning function (HVLT-R: P = 0.042) in patients in which CT genotype had lower scores. However, these differences were no longer significant after Bonferroni correction. CONCLUSIONS: Our study showed that the polymorphism of rs12294045 in EAAT2 gene may be associated with schizophrenia in Chinese Han population. CT genotype may be one of the risk factors for family history and cognitive deficits of patients.


Assuntos
Disfunção Cognitiva , Transportador 2 de Aminoácido Excitatório/genética , Esquizofrenia , Povo Asiático/genética , China , Disfunção Cognitiva/diagnóstico , Humanos , Polimorfismo de Nucleotídeo Único , Esquizofrenia/diagnóstico
12.
Addict Biol ; 27(4): e13178, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35754102

RESUMO

Alcohol dependence results in long-lasting neuroadaptive changes in meso-corticolimbic system, especially in the nucleus accumbens (NAc), which drives relapse-like ethanol drinking upon abstinence or withdrawal. Within NAc, altered glutamate homeostasis is one of the neuroadaptive changes caused by alcohol dependence. Accumbal glutamate homeostasis is tightly maintained through glutamate transporter 1 (GLT-1) and cystine-glutamate antiporter (xCT). But the role of GLT-1 and xCT in relapse-like ethanol drinking is poorly understood. Here, we used alcohol-preferring (P) rats in relapse-like ethanol drinking paradigm to (a) determine the effect of relapse-like ethanol drinking on gene and protein expression of GLT-1 and xCT in NAc, measured by quantitative polymerase chain reaction (qPCR) and Western blot, respectively; (b) examine if glutamate uptake is affected by relapse-like ethanol drinking in NAc, measured by radioactive glutamate uptake assay; (c) elucidate if upregulation of either/both GLT-1 or/and xCT through ceftriaxone is/are required to attenuate relapse-like ethanol drinking. The GLT-1 or xCT protein expression was suppressed during ceftriaxone treatments through microinjection of GLT-1/xCT anti-sense vivo-morpholinos. We found that relapse-like ethanol drinking did not affect the gene and protein expression of GLT-1 and xCT in NAc. The glutamate uptake was also unaltered. Ceftriaxone (200 mg/kg body weight, i.p.) treatments during the last 5 days of abstinence attenuated relapse-like ethanol drinking. The suppression of GLT-1 or xCT expression prevented the ceftriaxone-induced attenuation of relapse-like ethanol drinking. These findings confirm that upregulation of both GLT-1 and xCT within NAc is crucial for ceftriaxone-mediated attenuation of relapse-like ethanol drinking.


Assuntos
Alcoolismo , Ceftriaxona , Consumo de Bebidas Alcoólicas/metabolismo , Alcoolismo/genética , Alcoolismo/metabolismo , Sistemas de Transporte de Aminoácidos Acídicos/genética , Sistemas de Transporte de Aminoácidos Acídicos/metabolismo , Animais , Ceftriaxona/metabolismo , Ceftriaxona/farmacologia , Etanol/farmacologia , Transportador 2 de Aminoácido Excitatório/genética , Ácido Glutâmico/metabolismo , Núcleo Accumbens , Ratos , Recidiva
13.
Proc Natl Acad Sci U S A ; 116(43): 21800-21811, 2019 10 22.
Artigo em Inglês | MEDLINE | ID: mdl-31591195

RESUMO

The excitatory amino acid transporter 2 (EAAT2) is the major glutamate transporter in the brain expressed predominantly in astrocytes and at low levels in neurons and axonal terminals. EAAT2 expression is reduced in aging and sporadic Alzheimer's disease (AD) patients' brains. The role EAAT2 plays in cognitive aging and its associated mechanisms remains largely unknown. Here, we show that conditional deletion of astrocytic and neuronal EAAT2 results in age-related cognitive deficits. Astrocytic, but not neuronal EAAT2, deletion leads to early deficits in short-term memory and in spatial reference learning and long-term memory. Neuronal EAAT2 loss results in late-onset spatial reference long-term memory deficit. Neuronal EAAT2 deletion leads to dysregulation of the kynurenine pathway, and astrocytic EAAT2 deficiency results in dysfunction of innate and adaptive immune pathways, which correlate with cognitive decline. Astrocytic EAAT2 deficiency also shows transcriptomic overlaps with human aging and AD. Overall, the present study shows that in addition to the widely recognized astrocytic EAAT2, neuronal EAAT2 plays a role in hippocampus-dependent memory. Furthermore, the gene expression profiles associated with astrocytic and neuronal EAAT2 deletion are substantially different, with the former associated with inflammation and synaptic function similar to changes observed in human AD and gene expression changes associated with inflammation similar to the aging human brain.


Assuntos
Doença de Alzheimer/metabolismo , Astrócitos/metabolismo , Disfunção Cognitiva/patologia , Transportador 2 de Aminoácido Excitatório/deficiência , Transtornos da Memória/patologia , Neurônios/metabolismo , Adulto , Idoso de 80 Anos ou mais , Envelhecimento/fisiologia , Animais , Cognição/fisiologia , Disfunção Cognitiva/genética , Transportador 2 de Aminoácido Excitatório/genética , Hipocampo/fisiologia , Humanos , Cinurenina/metabolismo , Masculino , Transtornos da Memória/genética , Memória de Longo Prazo/fisiologia , Memória de Curto Prazo/fisiologia , Camundongos , Camundongos Knockout , Pessoa de Meia-Idade , Adulto Jovem
14.
J Cell Mol Med ; 25(5): 2530-2548, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33523598

RESUMO

Excitatory amino acid transporter 2 (EAAT2), the gene of which is known as solute carrier family 1 member 2 (SLC1A2), is an important membrane-bound transporter that mediates approximately 90% of the transport and clearance of l-glutamate at synapses in the central nervous system (CNS). Transmembrane domain 2 (TM2) of EAAT2 is close to hairpin loop 2 (HP2) and far away from HP1 in the inward-facing conformation. In the present study, 14 crucial amino acid residues of TM2 were identified via alanine-scanning mutations. Further analysis in EAAT2-transfected HeLa cells in vitro showed that alanine substitutions of these residues resulted in a decrease in the efficiency of trafficking/targeting to the plasma membrane and/or reduced functionality of membrane-bound, which resulted in impaired transporter activity. After additional mutations, the transporter activities of some alanine-substitution mutants recovered. Specifically, the P95A mutant decreased EAAT2-associated anion currents. The Michaelis constant (Km ) values of the mutant proteins L85A, L92A and L101A were increased significantly, whereas R87 and P95A were decreased significantly, indicating that the mutations L85A, L92A and L101A reduced the affinity of the transporter and the substrate, whereas R87A and P95A enhanced this affinity. The maximum velocity (Vmax) values of all 14 alanine mutant proteins were decreased significantly, indicating that all these mutations reduced the substrate transport rate. These results suggest that critical residues in TM2 affect not only the protein expression and membrane-bound localization of EAAT2, but also its interactions with substrates. Additionally, our findings elucidate that the P95A mutant decreased EAAT2-related anion currents. Our results indicate that the TM2 of EAAT2 plays a vital role in the transport process. The key residues in TM2 affect protein expression in the membrane, substrate transport and the anion currents of EAAT2.


Assuntos
Aminoácidos , Ânions/metabolismo , Transportador 2 de Aminoácido Excitatório/química , Transportador 2 de Aminoácido Excitatório/metabolismo , Domínios e Motivos de Interação entre Proteínas , Aminoácidos/metabolismo , Transporte Biológico , Membrana Celular/metabolismo , Transportador 2 de Aminoácido Excitatório/genética , Células HeLa , Humanos , Cinese , Modelos Moleculares , Mutação , Ligação Proteica , Conformação Proteica , Relação Estrutura-Atividade
15.
J Biol Chem ; 295(46): 15662-15676, 2020 11 13.
Artigo em Inglês | MEDLINE | ID: mdl-32893191

RESUMO

Manganese (Mn)-induced neurotoxicity resembles Parkinson's disease (PD), but the mechanisms underpinning its effects remain unknown. Mn dysregulates astrocytic glutamate transporters, GLT-1 and GLAST, and dopaminergic function, including tyrosine hydroxylase (TH). Our previous in vitro studies have shown that Mn repressed GLAST and GLT-1 via activation of transcription factor Yin Yang 1 (YY1). Here, we investigated if in vivo astrocytic YY1 deletion mitigates Mn-induced dopaminergic neurotoxicity, attenuating Mn-induced reduction in GLAST/GLT-1 expression in murine substantia nigra (SN). AAV5-GFAP-Cre-GFP particles were infused into the SN of 8-week-old YY1 flox/flox mice to generate a region-specific astrocytic YY1 conditional knockout (cKO) mouse model. 3 weeks after adeno-associated viral (AAV) infusion, mice were exposed to 330 µg of Mn (MnCl2 30 mg/kg, intranasal instillation, daily) for 3 weeks. After Mn exposure, motor functions were determined in open-field and rotarod tests, followed by Western blotting, quantitative PCR, and immunohistochemistry to assess YY1, TH, GLAST, and GLT-1 levels. Infusion of AAV5-GFAP-Cre-GFP vectors into the SN resulted in region-specific astrocytic YY1 deletion and attenuation of Mn-induced impairment of motor functions, reduction of TH-expressing cells in SN, and TH mRNA/protein levels in midbrain/striatum. Astrocytic YY1 deletion also attenuated the Mn-induced decrease in GLAST/GLT-1 mRNA/protein levels in midbrain. Moreover, YY1 deletion abrogated its interaction with histone deacetylases in astrocytes. These results indicate that astrocytic YY1 plays a critical role in Mn-induced neurotoxicity in vivo, at least in part, by reducing astrocytic GLAST/GLT-1. Thus, YY1 might be a potential target for treatment of Mn toxicity and other neurological disorders associated with dysregulation of GLAST/GLT-1.


Assuntos
Intoxicação por Manganês/patologia , Substância Negra/metabolismo , Fator de Transcrição YY1/metabolismo , Animais , Astrócitos/citologia , Astrócitos/metabolismo , Cloretos/toxicidade , Regulação para Baixo/efeitos dos fármacos , Transportador 1 de Aminoácido Excitatório/genética , Transportador 1 de Aminoácido Excitatório/metabolismo , Transportador 2 de Aminoácido Excitatório/genética , Transportador 2 de Aminoácido Excitatório/metabolismo , Feminino , Histona Desacetilases/metabolismo , Locomoção/efeitos dos fármacos , Masculino , Compostos de Manganês , Intoxicação por Manganês/metabolismo , Camundongos , Camundongos Knockout , RNA Mensageiro/metabolismo , Tirosina 3-Mono-Oxigenase/genética , Tirosina 3-Mono-Oxigenase/metabolismo , Fator de Transcrição YY1/genética
16.
J Biol Chem ; 295(13): 4359-4366, 2020 03 27.
Artigo em Inglês | MEDLINE | ID: mdl-32079674

RESUMO

Excitatory amino acid transporters (EAATs) represent a protein family that is an emerging drug target with great therapeutic potential for managing central nervous system disorders characterized by dysregulation of glutamatergic neurotransmission. As such, it is of significant interest to discover selective modulators of EAAT2 function. Here, we applied computational methods to identify specific EAAT2 inhibitors. Utilizing a homology model of human EAAT2, we identified a binding pocket at the interface of the transport and trimerization domain. We next conducted a high-throughput virtual screen against this site and identified a selective class of EAAT2 inhibitors that were tested in glutamate uptake and whole-cell electrophysiology assays. These compounds represent potentially useful pharmacological tools suitable for further exploration of the therapeutic potential of EAAT2 and may provide molecular insights into mechanisms of allosteric modulation for glutamate transporters.


Assuntos
Sistema X-AG de Transporte de Aminoácidos/antagonistas & inibidores , Sítios de Ligação/efeitos dos fármacos , Doenças do Sistema Nervoso Central/tratamento farmacológico , Transportador 2 de Aminoácido Excitatório/antagonistas & inibidores , Sistema X-AG de Transporte de Aminoácidos/química , Sistema X-AG de Transporte de Aminoácidos/genética , Animais , Sítios de Ligação/genética , Transporte Biológico/efeitos dos fármacos , Doenças do Sistema Nervoso Central/genética , Doenças do Sistema Nervoso Central/patologia , Biologia Computacional , Transportador 2 de Aminoácido Excitatório/química , Transportador 2 de Aminoácido Excitatório/genética , Humanos , Ligação Proteica/efeitos dos fármacos , Transmissão Sináptica/efeitos dos fármacos , Interface Usuário-Computador
17.
J Cell Physiol ; 236(11): 7516-7532, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-33855721

RESUMO

Inflammatory pathway and disruption in glutamate homeostasis join at the level of the glia, resulting in various neurological disorders. In vitro studies have provided evidence that membrane proteins connexions (Cxs) are involved in glutamate release, meanwhile, excitatory amino-acid transporters (EAATs) are crucial for glutamate reuptake (clearance). Moreover, pannexin-1 (Panx-1) activation is more detrimental to neurons. Their expression patterns during inflammation and the impacts of IκB kinase (IKK) inhibition, morphine, and galantamine on the inflammatory-associated glutamate imbalance remain elusive. To investigate this, rats were injected with saline or lipopolysaccharide. Thereafter, vehicles, morphine, galantamine, and BAY-117082 were administered in different groups of animals. Subsequently, electroencephalography, enzyme-linked immunosorbent assay, western blot, and histopathological examinations were carried out and various indicators of inflammation and glutamate level were determined. Parallel analysis of Cxs, Panx-1, and EAAts in the brain was performed. Our findings strengthen the concept that unregulated expressions of Cxs, Panx-1, and EAATs contribute to glutamate accumulation and neuronal cell loss. Nuclear factor-kB (NF-κB) pathway can significantly contribute to glutamate homeostasis via modulating Cxs, Panx-1, and EAATs expressions. BAY-117082, via inhibition of IkK, promoted the anti-inflammatory effects of morphine as well as galantamine. We concluded that NF-κB is an important component of reshaping the expressions of Cxs, panx-1, and EAATs and the development of glutamate-induced neuronal degeneration.


Assuntos
Anti-Inflamatórios/farmacologia , Encéfalo/efeitos dos fármacos , Conexinas/metabolismo , Transportador 1 de Aminoácido Excitatório/metabolismo , Transportador 2 de Aminoácido Excitatório/metabolismo , Galantamina/farmacologia , Quinase I-kappa B/antagonistas & inibidores , Morfina/farmacologia , Proteínas do Tecido Nervoso/metabolismo , Doenças Neurodegenerativas/prevenção & controle , Neuroproteção/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Nitrilas/farmacologia , Sulfonas/farmacologia , Animais , Encéfalo/metabolismo , Encéfalo/patologia , Modelos Animais de Doenças , Transportador 1 de Aminoácido Excitatório/genética , Transportador 2 de Aminoácido Excitatório/genética , Ácido Glutâmico , Quinase I-kappa B/metabolismo , Lipopolissacarídeos , Masculino , Doenças Neurodegenerativas/induzido quimicamente , Doenças Neurodegenerativas/metabolismo , Doenças Neurodegenerativas/patologia , Neuroglia/efeitos dos fármacos , Neuroglia/metabolismo , Neuroglia/patologia , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Neurônios/patologia , Ratos Sprague-Dawley , Transdução de Sinais
18.
Glia ; 69(10): 2404-2418, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34110044

RESUMO

Methamphetamine (METH) is a common abused drug. METH-triggered glutamate (Glu) levels in dorsal CA1 (dCA1) could partially explain the etiology of METH-caused abnormal memory, but the synaptic mechanism remains unclear. Here, we found that METH withdrawal disrupted spatial memory in mice, accompanied by the increases in Glu levels and postsynaptic neuronal activities at dCA1 synapses. METH withdrawal weakened the capacity of Glu clearance in astrocytes, as indicated by increasing the A1-like astrocytes and phosphorylated signal transducer and activator of transcription 3 (p-STAT3), decreasing the Glu transporter 1(GLT-1, also known as EAAT2 or SLC1A2), Glu-aspartate-transporter (GLAST also known as EAAT1 or SLC1A3) and astrocytic glutamine synthase (GS), but failed to affect the presynaptic Glu release from dCA3 within dCA1. Moreover, we identified that in vitro A1-like astrocytes exhibited an increased STAT3 activation and the impaired capacity of Glu clearance. Most importantly, selective knockdown of astrocytic STAT3 in vivo in dCA1 restored the astrocytic capacity of Glu clearance, normalized Glu levels at dCA1 synapses, and finally rescued METH withdrawal-disrupted spatial memory in mice. Thus, astrocytic Glu clearance system, especially STAT3, serves as a novel target for future therapies against METH neurotoxicity.


Assuntos
Astrócitos , Metanfetamina , Animais , Astrócitos/fisiologia , Transportador 2 de Aminoácido Excitatório/genética , Ácido Glutâmico , Metanfetamina/toxicidade , Camundongos , Fator de Transcrição STAT3/genética , Memória Espacial
19.
Neurobiol Dis ; 157: 105443, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34246771

RESUMO

Astrocytic glutamate transporters are crucial for glutamate homeostasis in the brain, and dysregulation of these transporters can contribute to the development of epilepsy. Glutamate transporter-1 (GLT-1) is responsible for the majority of glutamate uptake in the dorsal forebrain and has been shown to be reduced at epileptic foci in patients and preclinical models of temporal lobe epilepsy (TLE). Current antiepileptic drugs (AEDs) work primarily by targeting neurons directly through suppression of excitatory neurotransmission or enhancement of inhibitory neurotransmission, which can lead to both behavioral and psychiatric side effects. This study investigates the therapeutic capacity of astrocyte-specific AAV-mediated GLT-1 expression in the intrahippocampal kainic acid (IHKA) model of TLE. In this study, we used Western blot analysis, immunohistochemistry, and long-term-video EEG monitoring to demonstrate that cell-type-specific upregulation of GLT-1 in astrocytes is neuroprotective at early time points during epileptogenesis, reduces seizure frequency and total time spent in seizures, and eliminates large behavioral seizures in the IHKA model of epilepsy. Our findings suggest that targeting glutamate uptake is a promising therapeutic strategy for the treatment of epilepsy.


Assuntos
Astrócitos/metabolismo , Epilepsia do Lobo Temporal/genética , Transportador 2 de Aminoácido Excitatório/genética , Hipocampo/metabolismo , Convulsões/genética , Animais , Modelos Animais de Doenças , Eletroencefalografia , Epilepsia do Lobo Temporal/induzido quimicamente , Epilepsia do Lobo Temporal/metabolismo , Epilepsia do Lobo Temporal/fisiopatologia , Agonistas de Aminoácidos Excitatórios/toxicidade , Técnicas de Introdução de Genes , Ácido Caínico/toxicidade , Camundongos , Convulsões/induzido quimicamente , Convulsões/metabolismo , Convulsões/fisiopatologia , Regulação para Cima
20.
Biochem Biophys Res Commun ; 567: 161-165, 2021 08 27.
Artigo em Inglês | MEDLINE | ID: mdl-34166912

RESUMO

Attention-deficit/hyperactivity disorder (ADHD) is a common neuropsychiatric disorder in children. Although animal models and human brain imaging studies indicate a significant role for glutamatergic dysfunction in ADHD, there is no direct evidence that glutamatergic dysfunction is sufficient to induce ADHD-like symptoms. The glial glutamate transporter GLT1 plays a critical role in glutamatergic neurotransmission. We report here the generation of mice expressing only 20% of normal levels of the GLT1. Unlike conventional GLT1 knockout mice, these mice survive to adulthood and exhibit ADHD-like phenotypes, including hyperactivity, impulsivity and impaired memory. These findings indicate that glutamatergic dysfunction due to GLT1 deficiency, a mechanism distinct from the dopaminergic deficit hypothesis of ADHD, underlies ADHD-like symptoms.


Assuntos
Transtorno do Deficit de Atenção com Hiperatividade/genética , Transportador 2 de Aminoácido Excitatório/genética , Animais , Transtorno do Deficit de Atenção com Hiperatividade/fisiopatologia , Regulação para Baixo , Masculino , Camundongos , Camundongos Knockout , Transmissão Sináptica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA