RESUMO
Dysregulation of the immune system is a cardinal feature of opioid addiction. Here, we characterize the landscape of peripheral immune cells from patients with opioid use disorder and from healthy controls. Opioid-associated blood exhibited an abnormal distribution of immune cells characterized by a significant expansion of fragile-like regulatory T cells (Tregs), which was positively correlated with the withdrawal score. Analogously, opioid-treated mice also showed enhanced Treg-derived interferon-γ (IFN-γ) expression. IFN-γ signaling reshaped synaptic morphology in nucleus accumbens (NAc) neurons, modulating subsequent withdrawal symptoms. We demonstrate that opioids increase the expression of neuron-derived C-C motif chemokine ligand 2 (Ccl2) and disrupted blood-brain barrier (BBB) integrity through the downregulation of astrocyte-derived fatty-acid-binding protein 7 (Fabp7), which both triggered peripheral Treg infiltration into NAc. Our study demonstrates that opioids drive the expansion of fragile-like Tregs and favor peripheral Treg diapedesis across the BBB, which leads to IFN-γ-mediated synaptic instability and subsequent withdrawal symptoms.
Assuntos
Interferon gama , Transtornos Relacionados ao Uso de Opioides , Síndrome de Abstinência a Substâncias , Linfócitos T Reguladores , Animais , Camundongos , Analgésicos Opioides/administração & dosagem , Interferon gama/metabolismo , Transtornos Relacionados ao Uso de Opioides/metabolismo , Transtornos Relacionados ao Uso de Opioides/patologiaRESUMO
Fentanyl is a powerful painkiller that elicits euphoria and positive reinforcement1. Fentanyl also leads to dependence, defined by the aversive withdrawal syndrome, which fuels negative reinforcement2,3 (that is, individuals retake the drug to avoid withdrawal). Positive and negative reinforcement maintain opioid consumption, which leads to addiction in one-fourth of users, the largest fraction for all addictive drugs4. Among the opioid receptors, µ-opioid receptors have a key role5, yet the induction loci of circuit adaptations that eventually lead to addiction remain unknown. Here we injected mice with fentanyl to acutely inhibit γ-aminobutyric acid-expressing neurons in the ventral tegmental area (VTA), causing disinhibition of dopamine neurons, which eventually increased dopamine in the nucleus accumbens. Knockdown of µ-opioid receptors in VTA abolished dopamine transients and positive reinforcement, but withdrawal remained unchanged. We identified neurons expressing µ-opioid receptors in the central amygdala (CeA) whose activity was enhanced during withdrawal. Knockdown of µ-opioid receptors in CeA eliminated aversive symptoms, suggesting that they mediate negative reinforcement. Thus, optogenetic stimulation caused place aversion, and mice readily learned to press a lever to pause optogenetic stimulation of CeA neurons that express µ-opioid receptors. Our study parses the neuronal populations that trigger positive and negative reinforcement in VTA and CeA, respectively. We lay out the circuit organization to develop interventions for reducing fentanyl addiction and facilitating rehabilitation.
Assuntos
Fentanila , Receptores Opioides mu , Reforço Psicológico , Animais , Feminino , Masculino , Camundongos , Analgésicos Opioides/farmacologia , Analgésicos Opioides/administração & dosagem , Núcleo Central da Amígdala/citologia , Núcleo Central da Amígdala/efeitos dos fármacos , Núcleo Central da Amígdala/metabolismo , Dopamina/metabolismo , Neurônios Dopaminérgicos/efeitos dos fármacos , Neurônios Dopaminérgicos/metabolismo , Fentanila/farmacologia , Camundongos Endogâmicos C57BL , Núcleo Accumbens/citologia , Núcleo Accumbens/efeitos dos fármacos , Núcleo Accumbens/metabolismo , Transtornos Relacionados ao Uso de Opioides/metabolismo , Transtornos Relacionados ao Uso de Opioides/patologia , Optogenética , Receptores Opioides mu/metabolismo , Síndrome de Abstinência a Substâncias/metabolismo , Síndrome de Abstinência a Substâncias/patologia , Área Tegmentar Ventral/citologia , Área Tegmentar Ventral/efeitos dos fármacos , Área Tegmentar Ventral/metabolismoRESUMO
Drug dependence is characterized by a switch in motivation wherein a positively reinforcing substance can become negatively reinforcing. Put differently, drug use can transform from a form of pleasure-seeking to a form of relief-seeking. Ventral tegmental area (VTA) GABA neurons form an anatomical point of divergence between two double dissociable pathways that have been shown to be functionally implicated and necessary for these respective motivations to seek drugs. The tegmental pedunculopontine nucleus (TPP) is necessary for opiate conditioned place preferences (CPP) in previously drug-naïve rats and mice, whereas dopaminergic (DA) transmission in the nucleus accumbens (NAc) is necessary for opiate CPP in opiate-dependent and withdrawn (ODW) rats and mice. Here, we show that this switch in functional anatomy is contingent upon the gap junction-forming protein, connexin-36 (Cx36), in VTA GABA neurons. Intra-VTA infusions of the Cx36 blocker, mefloquine, in ODW rats resulted in a reversion to a drug-naïve-like state wherein the TPP was necessary for opiate CPP and where opiate withdrawal aversions were lost. Consistent with these data, conditional knockout mice lacking Cx36 in GABA neurons (GAD65-Cre;Cx36 fl(CFP)/fl(CFP)) exhibited a perpetual drug-naïve-like state wherein opiate CPP was always DA independent, and opiate withdrawal aversions were absent even in mice subjected to an opiate dependence and withdrawal induction protocol. Further, viral-mediated rescue of Cx36 in VTA GABA neurons was sufficient to restore their susceptibility to an ODW state wherein opiate CPP was DA dependent. Our findings reveal a functional role for VTA gap junctions that has eluded prevailing circuit models of addiction.
Assuntos
Conexinas , Neurônios GABAérgicos , Junções Comunicantes , Transtornos Relacionados ao Uso de Opioides , Área Tegmentar Ventral , Animais , Masculino , Camundongos , Ratos , Conexinas/metabolismo , Conexinas/genética , Neurônios GABAérgicos/metabolismo , Neurônios GABAérgicos/efeitos dos fármacos , Proteína delta-2 de Junções Comunicantes , Junções Comunicantes/metabolismo , Junções Comunicantes/efeitos dos fármacos , Mefloquina/farmacologia , Transtornos Relacionados ao Uso de Opioides/metabolismo , Transtornos Relacionados ao Uso de Opioides/fisiopatologia , Núcleo Tegmental Pedunculopontino/metabolismo , Núcleo Tegmental Pedunculopontino/efeitos dos fármacos , Ratos Sprague-Dawley , Área Tegmentar Ventral/metabolismo , Área Tegmentar Ventral/efeitos dos fármacosRESUMO
Opioid overdose deaths have dramatically increased by 781% from 1999 to 2021. In the setting of HIV, opioid drug abuse exacerbates neurotoxic effects of HIV in the brain, as opioids enhance viral replication, promote neuronal dysfunction and injury, and dysregulate an already compromised inflammatory response. Despite the rise in fentanyl abuse and the close association between opioid abuse and HIV infection, the interactive comorbidity between fentanyl abuse and HIV has yet to be examined in vivo. The HIV-1 Tat-transgenic mouse model was used to understand the interactive effects between fentanyl and HIV. Tat is an essential protein produced during HIV that drives the transcription of new virions and exerts neurotoxic effects within the brain. The Tat-transgenic mouse model uses a glial fibrillary acidic protein (GFAP)-driven tetracycline promoter which limits Tat production to the brain and this model is well used for examining mechanisms related to neuroHIV. After 7 days of fentanyl exposure, brains were harvested. Tight junction proteins, the vascular cell adhesion molecule, and platelet-derived growth factor receptor-ß were measured to examine the integrity of the blood brain barrier. The immune response was assessed using a mouse-specific multiplex chemokine assay. For the first time in vivo, we demonstrate that fentanyl by itself can severely disrupt the blood-brain barrier and dysregulate the immune response. In addition, we reveal associations between inflammatory markers and tight junction proteins at the blood-brain barrier.
Assuntos
Barreira Hematoencefálica , Fentanila , HIV-1 , Camundongos Transgênicos , Doenças Neuroinflamatórias , Produtos do Gene tat do Vírus da Imunodeficiência Humana , Animais , Barreira Hematoencefálica/efeitos dos fármacos , Barreira Hematoencefálica/metabolismo , Barreira Hematoencefálica/patologia , Barreira Hematoencefálica/virologia , Camundongos , Fentanila/farmacologia , HIV-1/efeitos dos fármacos , HIV-1/genética , Produtos do Gene tat do Vírus da Imunodeficiência Humana/genética , Produtos do Gene tat do Vírus da Imunodeficiência Humana/metabolismo , Doenças Neuroinflamatórias/genética , Doenças Neuroinflamatórias/patologia , Doenças Neuroinflamatórias/virologia , Infecções por HIV/virologia , Infecções por HIV/genética , Infecções por HIV/patologia , Infecções por HIV/tratamento farmacológico , Modelos Animais de Doenças , Analgésicos Opioides/farmacologia , Analgésicos Opioides/efeitos adversos , Proteína Glial Fibrilar Ácida/genética , Proteína Glial Fibrilar Ácida/metabolismo , Proteínas de Junções Íntimas/metabolismo , Proteínas de Junções Íntimas/genética , Humanos , Encéfalo/efeitos dos fármacos , Encéfalo/virologia , Encéfalo/metabolismo , Encéfalo/patologia , Transtornos Relacionados ao Uso de Opioides/genética , Transtornos Relacionados ao Uso de Opioides/patologia , Transtornos Relacionados ao Uso de Opioides/metabolismoRESUMO
Opioid craving and relapse vulnerability is associated with severe and persistent sleep and circadian rhythm disruptions. Understanding the neurobiological underpinnings of circadian rhythms and opioid use disorder (OUD) may prove valuable for developing new treatments for opioid addiction. Previous work indicated molecular rhythm disruptions in the human brain associated with OUD, highlighting synaptic alterations in the dorsolateral prefrontal cortex (DLPFC) and nucleus accumbens (NAc)-key brain regions involved in cognition and reward, and heavily implicated in the pathophysiology of OUD. To provide further insights into the synaptic alterations in OUD, we used mass-spectrometry based proteomics to deeply profile protein expression alterations in bulk tissue and synaptosome preparations from DLPFC and NAc of unaffected and OUD subjects. We identified 55 differentially expressed (DE) proteins in DLPFC homogenates, and 44 DE proteins in NAc homogenates, between unaffected and OUD subjects. In synaptosomes, we identified 161 and 56 DE proteins in DLPFC and NAc, respectively, of OUD subjects. By comparing homogenate and synaptosome protein expression, we identified proteins enriched specifically in synapses that were significantly altered in both DLPFC and NAc of OUD subjects. Across brain regions, synaptic protein alterations in OUD subjects were primarily identified in glutamate, GABA, and circadian rhythm signaling. Using time-of-death (TOD) analyses, where the TOD of each subject is used as a time-point across a 24-h cycle, we were able to map circadian-related changes associated with OUD in synaptic proteomes associated with vesicle-mediated transport and membrane trafficking in the NAc and platelet-derived growth factor receptor beta signaling in DLPFC. Collectively, our findings lend further support for molecular rhythm disruptions in synaptic signaling in the human brain as a key factor in opioid addiction.
Assuntos
Núcleo Accumbens , Transtornos Relacionados ao Uso de Opioides , Humanos , Núcleo Accumbens/metabolismo , Córtex Pré-Frontal Dorsolateral , Proteoma/metabolismo , Ritmo Circadiano , Transtornos Relacionados ao Uso de Opioides/metabolismo , Córtex Pré-Frontal/metabolismoRESUMO
Experiencing some early life adversity can have an "inoculating" effect that promotes resilience in adulthood. However, the mechanisms underlying stress inoculation are unknown, and animal models are lacking. Here we used the limited bedding and nesting (LBN) model of adversity to evaluate stress inoculation of addiction-related phenotypes. In LBN, pups from postnatal days 2 to 9 and their dams were exposed to a low-resource environment. In adulthood, they were tested for addiction-like phenotypes and compared to rats raised in standard housing conditions. High levels of impulsivity are associated with substance abuse, but in males, LBN reduced impulsive choice compared to controls. LBN males also self-administered less morphine and had a lower breakpoint on a progressive ratio reinforcement schedule than controls. These effects of LBN on addiction-related behaviors were not found in females. Because the nucleus accumbens (NAc) mediates these behaviors, we tested whether LBN altered NAc physiology in drug-naïve and morphine-exposed rats. LBN reduced the frequency of spontaneous excitatory postsynaptic currents in males, but a similar effect was not observed in females. Only in males did LBN prevent a morphine-induced increase in the AMPA/NMDA ratio. RNA sequencing was performed to delineate the molecular signature in the NAc associated with LBN-derived phenotypes. LBN produced sex-specific changes in transcription, including in genes related to glutamate transmission. Collectively, these studies reveal that LBN causes a male-specific stress inoculation effect against addiction-related phenotypes. Identifying factors that promote resilience to addiction may reveal novel treatment options for patients.
Assuntos
Comportamento Animal , Núcleo Accumbens/fisiopatologia , Transtornos Relacionados ao Uso de Opioides/prevenção & controle , Resiliência Psicológica , Estresse Psicológico , Transcriptoma , Animais , Animais Recém-Nascidos , Feminino , Regulação da Expressão Gênica , Masculino , Núcleo Accumbens/efeitos dos fármacos , Transtornos Relacionados ao Uso de Opioides/genética , Transtornos Relacionados ao Uso de Opioides/metabolismo , Fenótipo , Ratos , Ratos Long-Evans , Receptores de AMPA/genética , Receptores de AMPA/metabolismo , Receptores de N-Metil-D-Aspartato/genética , Receptores de N-Metil-D-Aspartato/metabolismo , Fatores SexuaisRESUMO
Opioid use disorder (OUD) is a growing health emergency in the United States leading to an epidemic of overdose deaths. OUD is recognized as an addictive brain disorder resulting in psychological, cognitive and behavioural dysfunction. These observed clinical dysfunctions are a result of cellular changes that occur in the brain. Derangements in inflammation, neurogenesis and synaptic plasticity are observed in the brains of OUD patients. The mechanisms of these derangements are unclear; however, extracellular vesicles (EVs), membrane bound particles containing protein, nucleotides and lipids are currently being investigated as agents that invoke these cellular changes. The primary function of EVs is to facilitate intercellular communication by transfer of cargo (protein, nucleotides and lipids) between cells; however, changes in this cargo have been observed in models of OUD suggesting that EVs may be agents promoting the observed cellular derangements. This review summarizes evidence that altered cargo of EVs, specifically protein and miRNA, in models of OUD promote impairments in neurons, astrocytes and microglial cells. These findings support the premise that opioids alter EVs to detrimentally affect neuro-cellular function resulting in the observed addictive, psychological and neurocognitive deficits in OUD patients.
Assuntos
Vesículas Extracelulares , MicroRNAs , Transtornos Relacionados ao Uso de Opioides , Humanos , Estados Unidos , MicroRNAs/metabolismo , Transtornos Relacionados ao Uso de Opioides/metabolismo , Vesículas Extracelulares/genética , Vesículas Extracelulares/metabolismo , Nucleotídeos/metabolismo , LipídeosRESUMO
Approximately 25% of patients who are prescribed opioids for chronic pain misuse them, and 5 to 10% develop an opioid use disorder. Although the neurobiological target of opioids is well known, the molecular mechanisms that are responsible for the development of addiction-like behaviors in some but not all individuals are poorly known. To address this issue, we used a unique outbred rat population (heterogeneous stock) that better models the behavioral and genetic diversity that is found in humans. We characterized individual differences in addiction-like behaviors using an addiction index that incorporates the key criteria of opioid use disorder: escalated intake, highly motivated responding, and hyperalgesia. Using in vitro electrophysiological recordings in the central nucleus of the amygdala (CeA), we found that rats with high addiction-like behaviors (HA) exhibited a significant increase in γ-aminobutyric acid (GABA) transmission compared with rats with low addiction-like behaviors (LA) and naive rats. The superfusion of CeA slices with nociceptin/orphanin FQ peptide (N/OFQ; 500 nM), an endogenous opioid-like peptide, normalized GABA transmission in HA rats. Intra-CeA levels of N/OFQ were lower in HA rats than in LA rats. Intra-CeA infusions of N/OFQ (1 µg per site) reversed the escalation of oxycodone self-administration in HA rats but not in LA rats. These results demonstrate that the downregulation of N/OFQ levels in the CeA may be responsible for hyper-GABAergic tone in the CeA that is observed in individuals who develop addiction-like behaviors. Based on these results, we hypothesize that small molecules that target the N/OFQ system might be useful for the treatment of opioid use disorder.
Assuntos
Tonsila do Cerebelo/metabolismo , Peptídeos Opioides/administração & dosagem , Transtornos Relacionados ao Uso de Opioides/tratamento farmacológico , Oxicodona/efeitos adversos , Ácido gama-Aminobutírico/metabolismo , Tonsila do Cerebelo/efeitos dos fármacos , Animais , Humanos , Masculino , Transtornos Relacionados ao Uso de Opioides/etiologia , Transtornos Relacionados ao Uso de Opioides/metabolismo , Ratos , Autoadministração , NociceptinaRESUMO
Several theories have been proposed to explain the mechanisms of substance use in schizophrenia. Brain neurons pose a potential to provide novel insights into the association between opioid addiction, withdrawal, and schizophrenia. Thus, we exposed zebrafish larvae at 2 days post-fertilization (dpf) to domperidone (DPM) and morphine, followed by morphine withdrawal. Drug-induced locomotion and social preference were assessed, while the level of dopamine and the number of dopaminergic neurons were quantified. In the brain tissue, the expression levels of genes associated with schizophrenia were measured. The effects of DMP and morphine were compared to vehicle control and MK-801, a positive control to mimic schizophrenia. Gene expression analysis revealed that α1C, α1Sa, α1Aa, drd2a, and th1 were up-regulated after 10 days of exposure to DMP and morphine, while th2 was down-regulated. These two drugs also increased the number of positive dopaminergic neurons and the total dopamine level but reduced the locomotion and social preference. The termination of morphine exposure led to the up-regulation of th2, drd2a, and c-fos during the withdrawal phase. Our integrated data implicate that the dopamine system plays a key role in the deficits in social behavior and locomotion that are common in the schizophrenia-like symptoms and opioid dependence.
Assuntos
Canais de Cálcio , Domperidona , Antagonistas de Dopamina , Dopamina , Neurônios Dopaminérgicos , Morfina , Transtornos Relacionados ao Uso de Opioides , Esquizofrenia , Animais , Canais de Cálcio/metabolismo , Dopamina/metabolismo , Neurônios Dopaminérgicos/efeitos dos fármacos , Neurônios Dopaminérgicos/metabolismo , Morfina/administração & dosagem , Morfina/farmacologia , Transtornos Relacionados ao Uso de Opioides/metabolismo , Esquizofrenia/metabolismo , Peixe-Zebra , Domperidona/administração & dosagem , Domperidona/farmacologia , Antagonistas de Dopamina/administração & dosagem , Antagonistas de Dopamina/farmacologia , Locomoção/efeitos dos fármacos , Redes e Vias MetabólicasRESUMO
The brain's endogenous opioid and endocannabinoid systems are neuromodulatory of synaptic transmission, and play key roles in pain, memory, reward, and addiction. Recent clinical and pre-clinical evidence suggests that opioid use may be reduced with cannabinoid intake. This suggests the presence of a functional interaction between these two systems. Emerging research indicates that cannabinoids and opioids can functionally interact at different levels. At the cellular level, opioid and cannabinoids can have direct receptor associations, alterations in endogenous opioid peptide or cannabinoid release, or post-receptor activation interactions via shared signal transduction pathways. At the systems level, the nature of cannabinoid and opioid interaction might differ in brain circuits underlying different behavioral phenomenon, including reward-seeking or antinociception. Given the rising use of opioid and cannabinoid drugs, a better understanding of how these endogenous signaling systems interact in the brain is of significant interest. This review focuses on the potential relationship of these neural systems in addiction-related processes.
Assuntos
Canabinoides , Transtornos Relacionados ao Uso de Opioides , Analgésicos Opioides/farmacologia , Canabinoides/farmacologia , Humanos , Peptídeos Opioides , Transtornos Relacionados ao Uso de Opioides/tratamento farmacológico , Transtornos Relacionados ao Uso de Opioides/metabolismo , RecompensaRESUMO
Opioids play an important role in pain relief, but repeated exposure results in tolerance and dependence. To make opioids more effective and useful, research in the field has focused on reducing the tolerance and dependence for chronic pain relief. Here, we showed the effect of A20-binding inhibitor of nuclear factor-κB (ABIN-1) in modulating morphine function. We used hot-plate tests and conditioned place preference (CPP) tests to show that overexpression of ABIN-1 in the mouse brain attenuated morphine dependence. These effects of ABIN-1 are most likely mediated through the formation of ABIN-1-ß-arrestin2 complexes, which accelerate ß-arrestin2 degradation by ubiquitination. With the degradation of ß-arrestin2, ABIN-1 overexpression also decreased µ opioid receptor (MOR) phosphorylation and internalization after opioid treatment, affecting the ß-arrestin2-dependent signaling pathway to regulate morphine tolerance. Importantly, the effect of ABIN-1 on morphine tolerance was abolished in ß-arrestin2-knockout mice. Taken together, these results suggest that the interaction between ABIN-1 and ß-arrestin2 inhibits MOR internalization to attenuate morphine tolerance, revealing a novel mechanism for MOR regulation. Hence, ABIN-1 may be a therapeutic target to regulate MOR internalization, thus providing a foundation for a novel treatment strategy for alleviating morphine tolerance and dependence. SIGNIFICANCE STATEMENT: A20-binding inhibitor of nuclear factor-κB (ABIN-1) overexpression in the mouse brain attenuated morphine tolerance and dependence. The likely mechanism for this finding is that ABIN-1-ß-arrestin2 complex formation facilitated ß-arrestin2 degradation by ubiquitination. ABIN-1 targeted ß-arrestin2 to regulate morphine tolerance. Therefore, the enhancement of ABIN-1 is an important strategy to prevent morphine tolerance and dependence.
Assuntos
Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Encéfalo/metabolismo , Transtornos Relacionados ao Uso de Opioides/genética , Receptores Opioides mu/metabolismo , beta-Arrestina 2/metabolismo , Animais , Animais Geneticamente Modificados , Células CHO , Células , Cricetulus , Modelos Animais de Doenças , Feminino , Técnicas de Silenciamento de Genes , Células HEK293 , Humanos , Masculino , Camundongos , Transtornos Relacionados ao Uso de Opioides/metabolismo , Fosforilação , Proteólise , Ubiquitinação , beta-Arrestina 2/química , beta-Arrestina 2/genéticaRESUMO
The use of morphine as a first-line agent for moderate-to-severe pain is limited by the development of analgesic tolerance. Initially opioid receptor desensitization in response to repeated stimulation, thought to underpin the establishment of tolerance, was linked to a compensatory increase in adenylate cyclase responsiveness. The subsequent demonstration of cross-talk between N-methyl-D-aspartate (NMDA) glutamate receptors and opioid receptors led to the recognition of a role for nitric oxide (NO), wherein blockade of NO synthesis could prevent tolerance developing. Investigations of the link between NO levels and opioid receptor desensitization implicated a number of events including kinase recruitment and peroxynitrite-mediated protein regulation. Recent experimental advances and the identification of new cellular constituents have expanded the potential signaling candidates to include unexpected, intermediary compounds not previously linked to this process such as zinc, histidine triad nucleotide-binding protein 1 (HINT1), micro-ribonucleic acid (mi-RNA) and regulator of G protein signaling Z (RGSZ). A further complication is a lack of consistency in the protocols used to create tolerance, with some using acute methods measured in minutes to hours and others using days. There is also an emphasis on the cellular changes that are extant only after tolerance has been established. Although a review of the literature demonstrates a lack of spatio-temporal detail, there still appears to be a pivotal role for nitric oxide, as well as both intracellular and intercellular cross-talk. The use of more consistent approaches to verify these underlying mechanism(s) could provide an avenue for targeted drug development to rescue opioid efficacy.
Assuntos
Analgésicos Opioides/administração & dosagem , Tolerância a Medicamentos/fisiologia , Transtornos Relacionados ao Uso de Opioides/metabolismo , Analgésicos Opioides/efeitos adversos , Animais , Humanos , Morfina/administração & dosagem , Morfina/efeitos adversos , Óxido Nítrico/metabolismo , Transtornos Relacionados ao Uso de Opioides/psicologia , Dor/tratamento farmacológico , Dor/metabolismo , Dor/psicologia , Receptores de N-Metil-D-Aspartato/metabolismoRESUMO
Prescription opioid misuse is a major public health concern among children and adolescents in the United States. Opioids are the most commonly abused drugs and are the fastest growing drug problem among adolescents. In humans and animals, adolescence is a particularly sensitive period associated with an increased response to drugs of abuse. Our previous studies indicate that oxycodone exposure during adolescence increases morphine reward in adulthood. How early drug exposure mediates long-term changes in the brain and behavior is not known, but epigenetic regulation is a likely mechanism. To address this question, we exposed mice to oxycodone or saline during adolescence and examined epigenetic modifications at genes associated with dopamine activity during adulthood at early and late withdrawal, in the ventral tegmental area (VTA). We then compared these with alterations in the VTA of adult-treated mice following an equivalent duration of exposure and withdrawal to determine if the effects of oxycodone are age dependent. We observed persistence of adolescent-like gene expression following adolescent oxycodone exposure relative to age-matched saline exposed controls, although dopamine-related gene expression was transiently activated at 1 day of withdrawal. Following prolonged withdrawal enrichment of the repressive histone mark, H3K27me3, was maintained, consistent with inhibition of gene regulation following adolescent exposure. By contrast, mice exposed to oxycodone as adults showed loss of the repressive mark and increased gene expression following 28 days of withdrawal following oxycodone exposure. Together, our findings provide evidence that adolescent oxycodone exposure has long-term epigenetic consequences in VTA of the developing brain.
Assuntos
Analgésicos Opioides/metabolismo , Dopamina/metabolismo , Expressão Gênica/efeitos dos fármacos , Transtornos Relacionados ao Uso de Opioides/metabolismo , Oxicodona/metabolismo , Animais , Epigênese Genética/efeitos dos fármacos , Masculino , Camundongos , Morfina/metabolismo , Recompensa , Autoadministração , Área Tegmentar Ventral/efeitos dos fármacosRESUMO
Opioid use disorder is a devastating disorder with a high burden in terms of overdose mortality, with an urgent need for more personalized prevention or therapeutic interventions. For this purpose, the description and validation of biological measures of staging or treatment response is a highly active research field. We conducted a narrative review on the pathophysiology of opioid use disorder to propose staging of the disease and search for research studies proposing or demonstrating the predictive value of biomarkers. We propose a IV stage description of opioid use disorder, from (I) vulnerability stage to (II) disease progression, (III) constituted opioid dependence and were several type of treatments can be applied, to the reach a (IV) modified health state. We classified biomarkers studies according to the stage of the disorder they were intended to predict, and to the three categories of methods they used: anatomical and functional aspects of the brain, genetic/transcriptomic/epigenetic studies, and lastly biomarkers of systemic modifications associated with opioid use disorder, especially regarding the immune system. Most studies predicting Stage III that we reviewed collected data from small samples sizes and were cross-sectional association studies comparing opioid dependent patients and control groups. Pharmacogenetic biomarkers are proposed to predict treatment response. Future research should now emphasize prospective studies, replication in independent samples, and predictive value calculation of each biomarker. The most promising results are multimodal evaluations to be able to measure the state of the brain reward system in living individuals.
Assuntos
Biomarcadores/metabolismo , Transtornos Relacionados ao Uso de Opioides/metabolismo , Transtornos Relacionados ao Uso de Opioides/prevenção & controle , Progressão da Doença , Epigenômica , Humanos , Transtornos Relacionados ao Uso de Opioides/genética , Transtornos Relacionados ao Uso de Opioides/fisiopatologia , Estresse Oxidativo , FarmacogenéticaRESUMO
Biphalin, one of the opioid agonists, is a dimeric analog of enkephalin with a high affinity for opioid receptors. Opioid receptors are widespread in the central nervous system and in peripheral neuronal and non-neuronal tissues. Hence, these receptors and their agonists, which play an important role in pain blocking, may also be involved in the regulation of other physiological functions. Biphalin was designed and synthesized in 1982 by Lipkowski as an analgesic peptide. Extensive further research in various laboratories on the antinociceptive effects of biphalin has shown its excellent properties. It has been demonstrated that biphalin exhibits an analgesic effect in acute, neuropathic, and chronic animal pain models, and is 1000 times more potent than morphine when administered intrathecally. In the course of the broad conducted research devoted primarily to the antinociceptive effect of this compound, it has been found that biphalin may also potentially participate in the regulation of other opioid system-dependent functions. Nearly 40 years of research on the properties of biphalin have shown that it may play a beneficial role as an antiviral, antiproliferative, anti-inflammatory, and neuroprotective agent, and may also affect many physiological functions. This integral review analyzes the literature on the multidirectional biological effects of biphalin and its potential in the treatment of many opioid system-dependent pathophysiological diseases.
Assuntos
Encefalinas/farmacologia , Encefalinas/uso terapêutico , Transtornos Relacionados ao Uso de Opioides/tratamento farmacológico , Analgésicos/metabolismo , Analgésicos/farmacologia , Analgésicos Opioides/agonistas , Analgésicos Opioides/metabolismo , Encefalinas/química , Encefalinas/metabolismo , Morfina/farmacologia , Transtornos Relacionados ao Uso de Opioides/metabolismo , Dor/tratamento farmacológico , Receptores Opioides/efeitos dos fármacos , Receptores Opioides/metabolismoRESUMO
This brief review covers concepts in opioid pharmacology that were promoted during the period leading up to the establishment of the International Narcotics Research Conference (INRC) in the early 1970s and the discovery of endogenous opioid peptides in 1975. The founders of INRC, meeting together during the International Union of Pharmacology meeting in Basel in 1969, recognized that the time was ripe for the creation of an international society that would provide a venue for the discussion of research across disciplines in this rapidly expanding area of science. The emphasis here is on studies leading to the demonstration that specific receptors for morphine-like analgesics exist, the search for endogenous ligands for these receptors, and early attempts to elucidate the mechanisms underlying opiate drug tolerance, dependence, and addiction. SIGNIFICANCE STATEMENT: Research on opioids in the 20th century was driven by the search for nonaddicting analgesics. This review discusses the development of the "analgesic" receptor concept, the demonstration that such receptors existed, and the search for an endogenous ligand. Conceptual models were proposed to explain tolerance to the actions of opiate drugs and the development of dependence and addiction. This review explains these models and indicates how they foreshadowed more recent discoveries on the acute and chronic actions of opiate drugs.
Assuntos
Peptídeos Opioides/metabolismo , Transtornos Relacionados ao Uso de Opioides/metabolismo , Receptores Opioides/metabolismo , Animais , Congressos como Assunto , Humanos , Cooperação Internacional , LigantesRESUMO
Electrophysiological approaches provide powerful tools to further our understanding of how different opioids affect signaling through opioid receptors; how opioid receptors modulate circuitry involved in processes such as pain, respiration, addiction, and feeding; and how receptor signaling and circuits are altered by physiologic challenges, such as injury, stress, and chronic opioid treatment. The use of genetic manipulations to alter or remove µ-opioid receptors (MORs) with anatomic and cell type specificity and the ability to activate or inhibit specific circuits through opto- or chemogenetic approaches are being used in combination with electrophysiological, pharmacological, and systems-level physiology experiments to expand our understanding of the beneficial and maladaptive roles of opioids and opioid receptor signaling. New approaches for studying endogenous opioid peptide signaling and release and the dynamics of these systems in response to chronic opioid use, pain, and stress will add another layer to our understanding of the intricacies of opioid modulation of brain circuits. This understanding may lead to new targets or approaches for drug development or treatment regimens that may affect both acute and long-term effects of manipulating the activity of circuits involved in opioid-mediated physiology and behaviors. This review will discuss recent advancements in our understanding of the role of phosphorylation in regulating MOR signaling, as well as our understanding of circuits and signaling pathways mediating physiologic behaviors such as respiratory control, and discuss how electrophysiological tools combined with new technologies have and will continue to advance the field of opioid research. SIGNIFICANCE STATEMENT: This review discusses recent advancements in our understanding of µ-opioid receptor (MOR) function and regulation and the role of electrophysiological approaches combined with new technologies in pushing the field of opioid research forward. This covers regulation of MOR at the receptor level, adaptations induced by chronic opioid treatment, sites of action of MOR modulation of specific brain circuits, and the role of the endogenous opioid system in driving physiology and behavior through modulation of these brain circuits.
Assuntos
Encéfalo/fisiologia , Peptídeos Opioides/metabolismo , Transtornos Relacionados ao Uso de Opioides/fisiopatologia , Receptores Opioides mu/metabolismo , Animais , Pesquisa Biomédica , Fenômenos Eletrofisiológicos , Humanos , Transtornos Relacionados ao Uso de Opioides/metabolismo , Optogenética , Fosforilação , Receptores Opioides mu/genética , Transdução de SinaisRESUMO
The International Narcotics Research Conference (INRC) has a rich history of uniting the most creative minds across the fields of chemistry, pharmacology, physiology, and behavior in the study of opioids. The Conference has been a forum for sharing knowledge, discussing controversies, introducing innovative research, and announcing landmark discoveries. In this perspective for the Special Issue commemorating the 50th anniversary of the Conference we briefly highlight how the INRC has guided the evolution of opioid research and how new tools, models, and approaches are facilitating our ability to achieve the goals of preventing and treating opioid use disorder. SIGNIFICANCE STATEMENT: This perspective highlights the important role that the International Narcotics Research Conference has played in the evolution of opioid research and emphasizes how technological advances are facilitating research toward the goals of preventing and treating opioid use disorder.
Assuntos
Analgésicos Opioides/efeitos adversos , Transtornos Relacionados ao Uso de Opioides/prevenção & controle , Dor/tratamento farmacológico , Analgésicos Opioides/uso terapêutico , Pesquisa Biomédica , Encéfalo/metabolismo , Encéfalo/fisiopatologia , Congressos como Assunto , Humanos , Transtornos Relacionados ao Uso de Opioides/tratamento farmacológico , Transtornos Relacionados ao Uso de Opioides/metabolismo , Dor/fisiopatologia , Receptores Opioides/metabolismoRESUMO
For decades the broad role of opioids in addiction, neuropsychiatric disorders, and pain states has been somewhat well established. However, in recent years, with the rise of technological advances, not only is the existing dogma being challenged, but we are identifying new disease areas in which opioids play a critical role. This review highlights four new areas of exploration in the opioid field. The most recent addition to the opioid family, the nociceptin receptor system, shows promise as the missing link in understanding the neurocircuitry of motivation. It is well known that activation of the kappa opioid receptor system modulates negative affect and dysphoria, but recent studies now implicate the kappa opioid system in the modulation of negative affect associated with pain. Opioids are critical in pain management; however, the often-forgotten delta opioid receptor system has been identified as a novel therapeutic target for headache disorders and migraine. Lastly, changes to the gut microbiome have been shown to directly contribute to many of the symptoms of chronic opioid use and opioid related behaviors. This review summarizes the findings from each of these areas with an emphasis on identifying new therapeutic targets. SIGNIFICANCE STATEMENT: The focus of this minireview is to highlight new disease areas or new aspects of disease in which opioids have been implicated; this includes pain, motivation, migraine, and the microbiome. In some cases, this has resulted in the pursuit of a novel therapeutic target and resultant clinical trial. We believe this is very timely and will be a refreshing take on reading about opioids and disease.
Assuntos
Analgésicos Opioides/farmacologia , Transtornos de Enxaqueca/metabolismo , Transtornos Relacionados ao Uso de Opioides/microbiologia , Dor/metabolismo , Receptores Opioides/metabolismo , Analgésicos Opioides/uso terapêutico , Animais , Microbioma Gastrointestinal/efeitos dos fármacos , Humanos , Transtornos de Enxaqueca/tratamento farmacológico , Motivação , Transtornos Relacionados ao Uso de Opioides/metabolismo , Dor/tratamento farmacológico , Receptores Opioides delta/metabolismo , Receptores Opioides kappa/metabolismo , Transdução de Sinais/efeitos dos fármacos , Receptor de NociceptinaRESUMO
INTRODUCTION: Pregnant women exposed chronically to opioids smoked more cigarettes per day (CPD) and had a higher nicotine metabolite ratio (NMR), 3-hydroxycotinine/cotinine, a biomarker of nicotine metabolism and clearance, than those not receiving opioids. We examined CPD and NMR in a group of pregnant smokers, a quarter of whom were receiving opioid agonist therapy (OAT). AIMS AND METHODS: Pregnant smokers recruited to participate in a placebo-controlled trial of bupropion for smoking cessation provided a blood sample for measurement of NMR. RESULTS: Half (52.4%) of the 124 women with NMR data were African American. OAT-treated women (n = 34, 27.4%; 27 receiving methadone and 7 buprenorphine) were more likely to be white (79% vs. 30%, p < .001) and to have a lower mean PHQ-9 total score (2.91 [SD = 2.83] vs. 4.83 [SD = 3.82], p = .007). OAT-treated women reported smoking more CPD (9.50 [SD = 5.26] vs. 7.20 [SD = 3.65], p = .005) and had higher NMR (0.78 [SD = 0.36] vs. 0.56 [SD = 0.25], p = .001) than the non-OAT-treated group. In a linear regression analysis adjusting for race, depression severity, and CPD, NMR was greater in the OAT group (p = .025), among whom the daily methadone-equivalent dosage correlated with NMR (Spearman's ρ = 0.49, p = .003). CONCLUSIONS: Consistent with the findings of Oncken et al. (2019), we found that OAT smokers smoked more and had higher NMR than non-OAT smokers. As higher NMR is associated with a reduced likelihood of smoking cessation, the effects on NMR of both pregnancy and OAT could contribute to a lower smoking cessation rate in pregnant smokers receiving chronic opioid therapy. IMPLICATIONS: We replicated the finding that the NMR is significantly greater among pregnant smokers receiving OAT than those not receiving this treatment for opioid use disorder. Furthermore, we found that the dosage of the OAT was significantly associated with the NMR level. These findings may contribute to a poorer response to smoking cessation treatment in pregnant women treated with OAT, particularly those receiving high-dose therapy, and raise the question of whether novel approaches are needed to treat smoking in this subgroup of pregnant smokers.