RESUMO
Vitamin C (VC) serves as a pivotal nutrient for anti-oxidation process, metabolic responses, and stem cell differentiation. However, its precise contribution to placenta development and gestation remains obscure. Here, we demonstrated that physiological levels of VC act to stabilize Hand1, a key bHLH transcription factor vital for the development trajectory of trophoblast giant cell (TGC) lineages, thereby promoting the differentiation of trophoblast stem cells into TGC. Specifically, VC administration inactivated c-Jun N-terminal kinase (JNK) signaling, which directly phosphorylates Hand1 at Ser48, triggering the proteasomal degradation of Hand1. Conversely, a loss-of-function mutation at Ser48 on Hand1 not only significantly diminished both intrinsic and VC-induced stabilization of Hand1 but also underscored the indispensability of this residue. Noteworthy, the insufficiency of VC led to severe defects in the differentiation of diverse TGC subtypes and the formation of labyrinth's vascular network in rodent placentas, resulting in failure of maintenance of pregnancy. Importantly, VC deficiency, lentiviral knockdown of JNK or overexpression of Hand1 mutants in trophectoderm substantially affected the differentiation of primary and secondary TGC in E8.5 mouse placentas. Thus, these findings uncover the significance of JNK inactivation and consequential stabilization of Hand1 as a hitherto uncharacterized mechanism controlling VC-mediated placentation and perhaps maintenance of pregnancy.
Assuntos
Ácido Ascórbico , Fatores de Transcrição Hélice-Alça-Hélice Básicos , Diferenciação Celular , Proteínas Quinases JNK Ativadas por Mitógeno , Placentação , Trofoblastos , Animais , Feminino , Gravidez , Ácido Ascórbico/farmacologia , Ácido Ascórbico/metabolismo , Placentação/genética , Camundongos , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Proteínas Quinases JNK Ativadas por Mitógeno/genética , Diferenciação Celular/efeitos dos fármacos , Trofoblastos/metabolismo , Trofoblastos/efeitos dos fármacos , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Placenta/metabolismo , Fosforilação , Humanos , Camundongos Endogâmicos C57BLRESUMO
Circulating cell-free mitochondrial DNA (ccf-mtDNA) is an indicator of cell death, inflammation, and oxidative stress. ccf-mtDNA in pregnancies with placental dysfunction differs from that in healthy pregnancies, and the direction of this difference depends on gestational age and method of mtDNA quantification. Reactive oxygen species (ROS) trigger release of mtDNA, yet it is unknown whether trophoblast cells release mtDNA in response to oxidative stress, a common feature of pregnancies with placental pathology. We hypothesized that oxidative stress would induce cell death and release of mtDNA from trophoblast cells. BeWo cells were treated with antimycin A (10-320 µM) or rotenone (0.2-50 µM) to induce oxidative stress. A multiplex real-time quantitative PCR (qPCR) assay was used to quantify mtDNA and nuclear DNA in membrane-bound, non-membrane-bound, and vesicle-bound forms in cell culture supernatants and cell lysates. Treatment with antimycin A increased ROS (P < 0.0001), induced cell necrosis (P = 0.0004) but not apoptosis (P = 0.6471), and was positively associated with release of membrane-bound and non-membrane-bound mtDNA (P < 0.0001). Antimycin A increased mtDNA content in exosome-like extracellular vesicles (vesicle-bound form; P = 0.0019) and reduced autophagy marker expression (LC3A/B, P = 0.0002; p62, P < 0.001). Rotenone treatment did not influence mtDNA release or cell death (P > 0.05). Oxidative stress induces release of mtDNA into the extracellular space and causes nonapoptotic cell death and a reduction in autophagy markers in BeWo cells, an established in vitro model of human trophoblast cells. Intersection between autophagy and necrosis may mediate the release of mtDNA from the placenta in pregnancies exposed to oxidative stress.NEW & NOTEWORTHY This is the first study to test whether trophoblast cells release mitochondrial (mt)DNA in response to oxidative stress and to identify mechanisms of release and biological forms of mtDNA from this cellular type. This research identifies potential cellular mechanisms that can be used in future investigations to establish the source and biomarker potential of circulating mtDNA in preclinical experimental models and humans.
Assuntos
Antimicina A , DNA Mitocondrial , Espaço Extracelular , Estresse Oxidativo , Espécies Reativas de Oxigênio , Trofoblastos , Humanos , Trofoblastos/metabolismo , Trofoblastos/efeitos dos fármacos , Trofoblastos/patologia , DNA Mitocondrial/genética , DNA Mitocondrial/metabolismo , Feminino , Gravidez , Espécies Reativas de Oxigênio/metabolismo , Espaço Extracelular/metabolismo , Antimicina A/farmacologia , Rotenona/farmacologia , Placenta/metabolismo , Placenta/efeitos dos fármacos , Placenta/patologia , Mitocôndrias/metabolismo , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/patologia , Necrose , Linhagem Celular , Apoptose/efeitos dos fármacos , Autofagia/efeitos dos fármacosRESUMO
During pregnancy, apoptosis is a physiological event critical in the remodeling and aging of the placenta. Increasing evidence has pointed toward the relevance of hypoxia as modulator of trophoblast cell death. Previous reports have shown that leptin, a placental cytokine, promotes cell survival in both cell culture and placental explant models. The aim of this work is to establish the role of leptin in apoptosis under hypoxic condition in trophoblast cells. In this study, we evaluated the effect of cobalt chloride, a hypoxia mimicking agent that stabilizes the expression of hypoxia-inducible factor-1 alpha, on Swan-71 and human placental explants. Hypoxia chamber was also used to generate 2% oxygen. Apoptosis was determined by the presence of apoptotic nucleus, fragmentation of DNA and Caspase-3 and PARP-1 cleavage. The pro-apoptotic proteins BAX, BID, BAD, and BAK and the anti-apoptotic effectors BCL-2, B-cell lymphoma-extra-large, and myeloid cell leukemia-1 were also analyzed. We found that hypoxia-inducible factor-1 alpha stabilization increased the appearance of apoptotic nucleus, fragmentation of DNA, and Caspase-3 and PARP-1 cleavage. Hypoxia mimicking conditions enhanced the expression of pro-apoptotic effectors BAX, BID, BAD, and BAK. Hypoxia-inducible factor-1 alpha stabilization also downregulated the level of BCL-2, B-cell lymphoma-extra-large, and myeloid cell leukemia-1. All these apoptotic parameters changes were reversed with leptin treatment. Moreover, we showed that leptin action on apoptosis modulation involves PI3K and MAPK signaling pathways. Obtained data demonstrate that hypoxia-inducible factor-1 alpha stabilization induces apoptosis in human placenta and leptin counteracts this effect, reinforcing its role as a survival cytokine.
Assuntos
Apoptose , Leptina , Placenta , Humanos , Feminino , Placenta/metabolismo , Placenta/efeitos dos fármacos , Gravidez , Leptina/metabolismo , Leptina/farmacologia , Apoptose/efeitos dos fármacos , Trofoblastos/metabolismo , Trofoblastos/efeitos dos fármacos , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Cobalto/farmacologia , Hipóxia Celular/fisiologiaRESUMO
The aim of this study was to evaluate the role of angiotensin-converting enzyme 1 (ACE1) in H2O2-induced trophoblast cell injury and the potential molecular mechanisms. Oxidative stress was modeled by exposing HTR-8/SVneo cells to 200 µM H2O2. Western blot and real-time quantitative PCR methods were used to detect protein and mRNA expression level of ACE1 in chorionic villus tissue and trophoblast HTR-8/SVneo cell. Inhibition of ACE1 expression was achieved by transfection with small interfering RNA. Then flow cytometry, Cell Counting Kit-8, and Transwell assay was used to assess apoptosis, viability, and migration ability of the cells. Reactive oxygen species (ROS) were detected by fluorescent probes, and malondialdehyde (MDA), superoxide dismutase (SOD), and reduced glutathione (GSH) activities were determined by corresponding detection kits. Angiotensin-converting enzyme 1 expression was upregulated in chorionic villus tissue of patients with missed abortion (MA) compared with individuals with normal early pregnancy abortion. H2O2 induced elevated ACE1 expression in HTR-8/SVneo cells, promoted apoptosis, and inhibited cell viability and migration. Knockdown of ACE1 expression inhibited H2O2-induced effects to enhance cell viability and migration and suppress apoptosis. Additionally, H2O2 stimulation caused increased levels of ROS and MDA and decreased SOD and GSH activity in the cells, whereas knockdown of ACE1 expression led to opposite changes of these oxidative stress indicators. Moreover, knockdown of ACE1 attenuated the inhibitory effect of H2O2 on the Nrf2/HO-1 pathway. Angiotensin-converting enzyme 1 was associated with MA, and it promoted H2O2-induced injury of trophoblast cells through inhibiting the Nrf2 pathway. Therefore, ACE1 may serve as a potential therapeutic target for MA.
Assuntos
Aborto Retido , Peróxido de Hidrogênio , Peptidil Dipeptidase A , Trofoblastos , Humanos , Trofoblastos/metabolismo , Trofoblastos/efeitos dos fármacos , Peróxido de Hidrogênio/farmacologia , Peptidil Dipeptidase A/genética , Peptidil Dipeptidase A/metabolismo , Feminino , Gravidez , Aborto Retido/genética , Aborto Retido/metabolismo , Apoptose/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Linhagem Celular , Espécies Reativas de Oxigênio/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Adulto , Movimento Celular/efeitos dos fármacosRESUMO
Preeclampsia (PE) is a common pregnancy complication with a high mortality rate. Abnormally activated endoplasmic reticulum stress (ERS) is believed to be responsible for the destruction of key placental cells-trophoblasts. Phenylbutyric acid (4-PBA), an ERS inhibitor, is involved in regulating the development of ERS-related diseases. At present, how 4-PBA affects trophoblasts and its mechanisms is still unclear. In this study, PE cell models were established by stimulating HTR-8/SVneo cells with hypoxia. To verify the underlying mechanisms of 4-PBA on PE, CCT020312, an activator of PERK, was also used. The results showed that 4-PBA restored hypoxia-induced trophoblast viability, inhibited HIF-1α protein expression, inflammation, and PERK/ATF-4/CHOP pathway. Hoechst 33342 staining and flow cytometry results confirmed that 4-PBA decreased hypoxia-induced apoptosis in trophoblasts. The results of the JC-1 analysis and apoptosis initiation enzyme activity assay also demonstrated that 4-PBA inhibited apoptosis related to the mitochondrial pathway. Furthermore, by detecting autophagy in trophoblasts, an increased number of autophagic vesicles, damaged mitochondria, enhanced dansylcadaverine fluorescence, enhanced levels of autophagy proteins Beclin-1, LC3II, and decreased p62 were seen in hypoxia-stimulated cells. These changes were reversed by 4-PBA. Furthermore, it was observed that CCT020312 reversed the effects of 4-PBA on the viability, apoptosis, and autophagosome number of hypoxia-induced trophoblasts. In summary, 4-PBA reduces autophagy and apoptosis via the PERK/ATF-4/CHOP pathway and mitochondrial pathway, thereby restoring the viability of hypoxic trophoblasts. These findings provide a solid evidence base for the use of 4-PBA in PE treatment and guide a new direction for improving the outcomes of patients with PE.
Assuntos
Fator 4 Ativador da Transcrição , Apoptose , Autofagia , Hipóxia Celular , Fenilbutiratos , Pré-Eclâmpsia , Fator de Transcrição CHOP , Trofoblastos , eIF-2 Quinase , Trofoblastos/efeitos dos fármacos , Trofoblastos/metabolismo , Trofoblastos/patologia , Feminino , Humanos , Pré-Eclâmpsia/metabolismo , Pré-Eclâmpsia/tratamento farmacológico , Pré-Eclâmpsia/patologia , Autofagia/efeitos dos fármacos , Fator de Transcrição CHOP/metabolismo , Apoptose/efeitos dos fármacos , Gravidez , Fenilbutiratos/farmacologia , eIF-2 Quinase/metabolismo , Fator 4 Ativador da Transcrição/metabolismo , Hipóxia Celular/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Linhagem CelularRESUMO
Triphenyl phosphate (TPhP) is an organophosphate flame retardant that is widely used in many commercial products. The United States Environmental Protection Agency has listed TPhP as a priority compound that requires health risk assessment. We previously found that TPhP could accumulate in the placentae of mice and impair birth outcomes by activating peroxisome proliferator-activated receptor gamma (PPARγ) in the placental trophoblast. However, the underlying mechanism remains unknown. In this study, we used a mouse intrauterine exposure model and found that TPhP induced preeclampsia (PE)-like symptoms, including new on-set gestational hypertension and proteinuria. Immunofluorescence analysis showed that during placentation, PPARγ was mainly expressed in the labyrinth layer and decidua of the placenta. TPhP significantly decreased placental implantation depth and impeded uterine spiral artery remodeling by activating PPARγ. The results of the in vitro experiments confirmed that TPhP inhibited extravillous trophoblast (EVT) cell migration and invasion by activating PPARγ and inhibiting the PI3K-AKT signaling pathway. Overall, our data demonstrated that TPhP could activate PPARγ in EVT cells, inhibit cell migration and invasion, impede placental implantation and uterine spiral artery remodeling, then induce PE-like symptom and impair birth outcomes. Although the exposure doses used in this study was several orders of magnitude higher than human daily intake, our study highlights the placenta as a potential target organ of TPhP worthy of further research.
Assuntos
Organofosfatos , Placentação , Pré-Eclâmpsia , Animais , Feminino , Gravidez , Pré-Eclâmpsia/induzido quimicamente , Camundongos , Placentação/efeitos dos fármacos , Organofosfatos/toxicidade , Retardadores de Chama/toxicidade , Placenta/efeitos dos fármacos , PPAR gama/metabolismo , PPAR gama/genética , Trofoblastos/efeitos dos fármacos , Efeitos Tardios da Exposição Pré-Natal/induzido quimicamenteRESUMO
Arginine, which is metabolized into ornithine, proline, and nitric oxide, plays an important role in embryonic development. The present study was conducted to investigate the molecular mechanism of arginine in proliferation, differentiation, and physiological function of porcine trophoblast cells (pTr2) through metabolic pathways. The results showed that arginine significantly increased cell viability (P < 0.05). The addition of arginine had a quadratic tendency to increase the content of progesterone (P = 0.06) and protein synthesis rate (P = 0.03), in which the maximum protein synthesis rate was observed at 0.4 mM arginine. Arginine quadratically increased (P < 0.05) the intracellular contents of spermine, spermidine and putrescine, as well as linearly increased (P < 0.05) the intracellular content of NO in a dose-dependent manner. Arginine showed a quadratic tendency to increase the content of putrescine (P = 0.07) and a linear tendency to increase NO content (P = 0.09) in cell supernatant. Moreover, increasing arginine activated (P < 0.05) the mRNA expressions for ARG, ODC, iNOS and PCNA. Furthermore, inhibitors of arginine metabolism (L-NMMA and DFMO) both inhibited cell proliferation, while addition of its metabolites (NO and putrescine) promoted the cell proliferation and cell cycle, the mRNA expressions of PCNA, EGF and IGF-1, and increased (P < 0.05) cellular protein synthesis rate, as well as estradiol and hCG secretion (P < 0.05). In conclusion, our results suggested that arginine could promote cell proliferation and physiological function by regulating the metabolic pathway. Further studies showed that arginine and its metabolites modulate cell function mainly through ß-catenin and mTOR pathways.
Assuntos
Arginina , Diferenciação Celular , Proliferação de Células , Serina-Treonina Quinases TOR , Trofoblastos , beta Catenina , Animais , Arginina/farmacologia , Arginina/metabolismo , Trofoblastos/efeitos dos fármacos , Trofoblastos/metabolismo , Suínos , Proliferação de Células/efeitos dos fármacos , Serina-Treonina Quinases TOR/metabolismo , Diferenciação Celular/efeitos dos fármacos , beta Catenina/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Óxido Nítrico/metabolismo , Linhagem CelularRESUMO
Cannabidivarin (CBDV) and cannabigerol (CBG) are minor phytocannabinoids from Cannabis sativa, whose health benefits have been reported. However, studies about the impact of these cannabinoids on fundamental cellular processes in placentation are scarce. Placental development involves physiological endoplasmic reticulum (ER) stress, however when exacerbated it can lead to altered angiogenesis and pregnancy disorders, such as intrauterine growth restriction and preeclampsia. In this work, the effects of CBDV and CBG (1-10 µM) on placental extravillous trophoblasts were studied, using the in vitro model HTR-8/SVneo cells. Both cannabinoids induced anti-proliferative effects and reactive oxygen/nitrogen species generation, which was dependent on transient receptor potential vanilloid 1 (TRPV1) activation. Moreover, CBDV and CBG significantly upregulated, in a TRPV-1 dependent manner, the gene expression of HSPA5/Glucose-regulated protein 78 (GRP78/BiP), a critical chaperone involved in ER stress and unfolded protein response (UPR) activation. Nevertheless, the UPR pathways were differentially activated. Both cannabinoids were able to recruit the IRE branch, while only CBDV enhanced the expression of downstream effectors of the PERK pathway, namely p-eIF2α, ATF4 and CHOP. It also augmented the activity of the apoptotic initiator caspases-8 and -9, though the effector caspases-3/-7 were not activated. TRB3 expression was increased by CBDV, which may hinder apoptosis termination. Moreover, both compounds upregulated the mRNA levels of the angiogenic factors VEGFA, PGF and sFLT1, and disrupted the endothelial-like behavior of HTR-8/SVneo cells, by reducing tube formation. Thus, CBDV and CBG treatment interferes with EVTs functions and may have a negative impact in placentation and in pregnancy outcome.
Assuntos
Canabinoides , Chaperona BiP do Retículo Endoplasmático , Estresse do Retículo Endoplasmático , Canais de Cátion TRPV , Trofoblastos , Resposta a Proteínas não Dobradas , Humanos , Trofoblastos/efeitos dos fármacos , Trofoblastos/metabolismo , Resposta a Proteínas não Dobradas/efeitos dos fármacos , Canais de Cátion TRPV/metabolismo , Canais de Cátion TRPV/genética , Linhagem Celular , Feminino , Gravidez , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Canabinoides/farmacologia , Proliferação de Células/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Proteínas de Choque Térmico/metabolismo , Proteínas de Choque Térmico/genética , Placenta/efeitos dos fármacos , Placenta/metabolismo , Neovascularização Fisiológica/efeitos dos fármacos , AngiogêneseRESUMO
HLA-C arose during evolution of pregnancy in the great apes 10 to 15 million years ago. It has a dual function on placental extravillous trophoblasts (EVTs) as it contributes to both tolerance and immunity at the maternal-fetal interface. The mode of its regulation is of considerable interest in connection with the biology of pregnancy and pregnancy abnormalities. First-trimester primary EVTs in which HLA-C is highly expressed, as well as JEG3, an EVT model cell line, were employed. Single-cell RNA-seq data and quantitative PCR identified high expression of the transcription factor ELF3 in those cells. Chromatin immunoprecipitation (ChIP)-PCR confirmed that both ELF3 and MED1 bound to the proximal HLA-C promoter region. However, binding of RFX5 to this region was absent or severely reduced, and the adjacent HLA-B locus remained closed. Expression of HLA-C was inhibited by ELF3 small interfering RNAs (siRNAs) and by wrenchnolol treatment. Wrenchnolol is a cell-permeable synthetic organic molecule that mimics ELF3 and is relatively specific for binding to ELF3's coactivator, MED23, as our data also showed in JEG3. Moreover, the ELF3 gene is regulated by a superenhancer that spans more than 5 Mb, identified by assay for transposase-accessible chromatin using sequencing (ATAC-seq), as well as by its sensitivity to (+)-JQ1 (inhibitor of BRD4). ELF3 bound to its own promoter, thus creating an autoregulatory feedback loop that establishes expression of ELF3 and HLA-C in trophoblasts. Wrenchnolol blocked binding of MED23 to ELF3, thus disrupting the positive-feedback loop that drives ELF3 expression, with down-regulation of HLA-C expression as a consequence.
Assuntos
Proteínas de Ligação a DNA/genética , Elementos Facilitadores Genéticos , Retroalimentação Fisiológica , Antígenos HLA-C/genética , Proteínas Proto-Oncogênicas c-ets/genética , Fatores de Transcrição/genética , Trofoblastos/imunologia , Aborto Legal , Adamantano/farmacologia , Azepinas/farmacologia , Linhagem Celular , Proteínas de Ligação a DNA/antagonistas & inibidores , Proteínas de Ligação a DNA/imunologia , Feminino , Regulação da Expressão Gênica no Desenvolvimento/imunologia , Antígenos HLA-B/genética , Antígenos HLA-B/imunologia , Antígenos HLA-C/imunologia , Humanos , Imunidade Materno-Adquirida , Indóis/farmacologia , Complexo Mediador/genética , Complexo Mediador/imunologia , Subunidade 1 do Complexo Mediador/genética , Subunidade 1 do Complexo Mediador/imunologia , Gravidez , Primeiro Trimestre da Gravidez , Cultura Primária de Células , Regiões Promotoras Genéticas , Ligação Proteica , Proteínas Proto-Oncogênicas c-ets/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-ets/imunologia , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/imunologia , Fatores de Transcrição de Fator Regulador X/genética , Fatores de Transcrição de Fator Regulador X/imunologia , Transdução de Sinais , Fatores de Transcrição/antagonistas & inibidores , Fatores de Transcrição/imunologia , Triazóis/farmacologia , Trofoblastos/citologia , Trofoblastos/efeitos dos fármacosRESUMO
OBJECTIVES: Necroptosis, a form of programmed cell death, can occur in the placenta of patients with preeclampsia (PE). Hydrogen sulfide (H2S) can inhibit necroptosis of human umbilical vein endothelial cells under the high glucose-induced injury. Whether H2S can protect trophoblasts against necroptosis underlying PE has not been elucidated. This study aimed to explore the protective role of H2S in trophoblast cells against necroptosis underlying PE. DESIGN: This is an in vitro experimental study. PARTICIPANTS: A total of 10 pregnant women with severe PE and 10 matched control normotensive pregnant women were included. The placenta tissues were extracted from participators. The human JEG-3 trophoblasts were commercially available. METHODS: The expression and localization of necrotic proteins were assayed in human placenta samples, and the effect of necrotic cell death on the proliferation and apoptosis of human JEG-3 trophoblasts was evaluated. The component expressions of inflammatory cytokine and p38MAPK signaling pathway were measured in samples pretreated with or without NaHS (H2S donor) and SB203580 (p38 inhibitor). RESULTS: RIPA1, RIPA3, and p-p38 levels were significantly higher in PE placental tissue, whereas cystathionine ß-synthase expression was decreased. In JEG-3 trophoblasts, necroptosis increased apoptotic cell numbers, suppressed cell proliferation, increased inflammatory cytokine expression, and increased p38MAPK activation, which can be prevented by NaHS. LIMITATIONS: In the present study, we did not provide sufficient evidence that necroptosis was a part of the pathogenesis of PE. CONCLUSIONS: We proposed the putative role of necroptosis in early-onset PE, reflected by the blockage of caspase-8/3 and increased expression of RIPA1 and RIPA3 in PE placenta tissues. Furthermore, we demonstrated that exogenous H2S protected cytotrophoblasts against ceramide-induced necroptosis via the p38MAPK pathway.
Assuntos
Sulfeto de Hidrogênio , Necroptose , Pré-Eclâmpsia , Trofoblastos , Proteínas Quinases p38 Ativadas por Mitógeno , Humanos , Feminino , Pré-Eclâmpsia/metabolismo , Gravidez , Sulfeto de Hidrogênio/farmacologia , Sulfeto de Hidrogênio/metabolismo , Trofoblastos/metabolismo , Trofoblastos/efeitos dos fármacos , Necroptose/efeitos dos fármacos , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Adulto , Placenta/metabolismo , Placenta/efeitos dos fármacos , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Sistema de Sinalização das MAP Quinases/fisiologia , Apoptose/efeitos dos fármacos , Linhagem Celular , Estudos de Casos e Controles , Imidazóis/farmacologiaRESUMO
Copper pollution has attracted global environmental concern. Widespread Cu pollution results in excessive Cu accumulation in human. Epidemiological studies and animal experiments revealed that Cu exposure might have reproductive toxicity. Cuproptosis is a recently reported Cu-dependent and programmed cell death pattern. However, the mechanism by which copper exposure might cause cell cuproptosis is largely unknown. We chose trophoblast cells as cell model and found that copper exposure causes trophoblast cell cuproptosis. In mechanism, copper exposure up-regulates lnc-HZ11 expression levels, which increases intracellular Cu2+ levels and causes trophoblast cell cuproptosis. Knockdown of lnc-HZ11 efficiently reduces intracellular Cu2+ levels and alleviate trophoblast cell cuproptosis, which could be further alleviated by co-treatment with DC or TEPA. These results discover novel toxicological effects of copper exposure and also provide potential target for protection trophoblast cells from cuproptosis in the presence of excessive copper exposure.
Assuntos
Cobre , Trofoblastos , Regulação para Cima , Trofoblastos/efeitos dos fármacos , Cobre/toxicidade , Humanos , Regulação para Cima/efeitos dos fármacos , Linhagem Celular , Poluentes Ambientais/toxicidade , RNA Longo não Codificante/genéticaRESUMO
Environmental benzo(a)pyrene (BaP) and itsmetabolite benzo(a)pyrene-7, 8-dihydrodiol-9, 10-epoxide (BPDE), classic endocrine disrupting chemical and persistent organic pollutant, could cause miscarriage. However, the detailed mechanisms are still largely unclear and should be further explored. In this study, we discovered that exposure of trophoblast cells with BPDE could suppressed cell invasion/migration by inhibiting MEST/VIM (Vimentin) pathway. Moreover, BPDE exposure also increased lnc-HZ01 expression level, which further inhibited MEST/VIM pathway and then suppressed invasion/migration. Knockdown of lnc-HZ01 or overexpression of MEST could efficiently rescue invasion/migration of BPDE-exposed Swan 71 cells. Furthermore, lnc-HZ01 was highly expressed and MEST/VIM were lowly expressed in recurrent miscarriage (RM) villous tissues compared with healthy control (HC) group. Finally, we also found that BaP exposure inhibited murine Mest/Vim pathway in placental tissues and induced miscarriage in BaP-exposed mice. Therefore, the regulatory mechanisms were similar in BPDE-exposed human trophoblast cells, RM villous tissues, and placental tissues of BaP-exposed mice with miscarriage, building a bridge to connect BaP/BPDE exposure, invasion/migration, and miscarriage. This study provided novel insights in the toxicological effects and molecular mechanisms of BaP/BPDE-induced miscarriage, which is helpful for better elucidating the toxicological risks of BaP/BPDE on female reproduction.
Assuntos
7,8-Di-Hidro-7,8-Di-Hidroxibenzo(a)pireno 9,10-óxido , Benzo(a)pireno , Movimento Celular , Regulação para Baixo , Trofoblastos , Trofoblastos/efeitos dos fármacos , Feminino , Animais , Movimento Celular/efeitos dos fármacos , Benzo(a)pireno/toxicidade , Humanos , Camundongos , 7,8-Di-Hidro-7,8-Di-Hidroxibenzo(a)pireno 9,10-óxido/toxicidade , Gravidez , Disruptores Endócrinos/toxicidade , Poluentes Ambientais/toxicidade , Linhagem Celular , Aborto Espontâneo/induzido quimicamenteRESUMO
Maternal exposure to nanoparticles during gestation poses potential risks to fetal development. The placenta, serving as a vital interface for maternal-fetal interaction, plays a pivotal role in shielding the fetus from direct nanoparticle exposure. However, the impact of nanoparticles on placental function is still poorly understood, primarily due to the absence of proper human placental models. In this study, we established a placenta-on-a-chip model capable of recapitulating nanoparticle exposure to assess potential nanotoxicity. The model was assembled by coculturing human trophoblast stem cells (hTSCs) and endothelial cells within a dynamic microsystem. hTSCs exhibited progressive differentiation into syncytiotrophoblasts under continuous fluid flow, forming a bilayered trophoblastic epithelium that mimicking both structural and functional aspects of human placental villi. Copper oxide nanoparticles (CuO NPs) were introduced into the trophoblastic side to simulate maternal blood exposure. Our findings revealed that CuO NPs hindered hTSCs differentiation, leading to diminished hormone secretion and impaired glucose transport. Subsequent analysis indicated that CuO NPs disrupted the autophagic flux in trophoblasts and induced apoptosis. Furthermore, the placenta-on-a-chip model exhibited inflammatory responses to CuO NP exposure, including maternal macrophage activation, inflammatory cytokine secretion, and endothelial barrier disruption. Dysfunction of the placental barrier and the ensuing inflammatory cascades may contribute to aberrant fetal development. Overall, our placenta-on-a-chip model offers a promising platform for assessing nanoparticle exposure-related risks and conducting toxicology studies.
Assuntos
Placenta , Células-Tronco , Trofoblastos , Humanos , Trofoblastos/efeitos dos fármacos , Feminino , Gravidez , Placenta/efeitos dos fármacos , Células-Tronco/efeitos dos fármacos , Cobre/toxicidade , Diferenciação Celular/efeitos dos fármacos , Nanopartículas Metálicas/toxicidade , Dispositivos Lab-On-A-Chip , Apoptose/efeitos dos fármacos , Nanopartículas/toxicidadeRESUMO
It has been well acknowledged that maternal exposure to fine particulate matters (PM2.5) might lead to poor pregnancy outcomes including the intrauterine growth restriction (IUGR) by interfering with the placental development. Our previous studies have demonstrated that maternal PM2.5 exposure induces IUGR, accompanied with increased maternal circulating TNFα level and impaired extravillous trophoblast cells (EVTs) invasion in mice. In this study, HTR8/SVneo cells, the immortalized human EVTs line, were used to assess effects and the underlying molecular mechanisms of nicotinamide on the impaired EVTs invasion. Our results showed that, the placental FLT1 protein level was significantly increased whereas maternal serum nicotinamide concentration was remarkably decreased in PM2.5-exposured pregnant mice at GD17.5 (vaginal plug day=GD0.5), compared to that in normal GD17.5 pregnant mice. FLT1 expression in HTR8/SVneo cells was significantly up-regulated by TNFα treatment, and the down-regulated FLT1 expression effectively abated the inhibitory effects of TNFα on HTR8/SVneo cells migration and invasion. Meanwhile, TNFα promoted reactive oxygen species (ROS) production and NF-κB signaling pathway activation in HTR8/SVneo cells in a dose-dependent manner. Nicotinamide treatment significantly reversed the effects of TNFα on cell migration and invasion, as well as the FLT1 expression, ROS production and NF-κB pathway activation. In summary, increased TNFα induced by PM2.5 exposure inhibits EVTs invasion by activating the ROS/NF-κB/FLT1 signaling pathway, and this adverse effect could be attenuated by nicotinamide treatment, suggesting a potential application in the clinical intervention of PM2.5-induced IUGR.
Assuntos
NF-kappa B , Niacinamida , Material Particulado , Espécies Reativas de Oxigênio , Trofoblastos , Fator de Necrose Tumoral alfa , Receptor 1 de Fatores de Crescimento do Endotélio Vascular , Trofoblastos/efeitos dos fármacos , Trofoblastos/patologia , Niacinamida/farmacologia , Fator de Necrose Tumoral alfa/metabolismo , Material Particulado/toxicidade , Feminino , Animais , Espécies Reativas de Oxigênio/metabolismo , NF-kappa B/metabolismo , Gravidez , Camundongos , Humanos , Receptor 1 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Movimento Celular/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Linhagem Celular , Poluentes Atmosféricos/toxicidade , Exposição Materna/efeitos adversos , Trofoblastos ExtravilososRESUMO
Benzo(a)pyrene (BaP) can be detected in the human placenta. However, little is known about the effects of BaP exposure on different placental cells under various conditions. In this study, we aimed to investigate the effects of BaP on mitochondrial function, pyrin domain-containing protein 3 (NLRP3) inflammasome, and apoptosis in three human trophoblast cell lines under normoxia, hypoxia, and inflammatory conditions. JEG-3, BeWo, and HTR-8/SVneo cell lines were exposed to BaP under normoxia, hypoxia, or inflammatory conditions for 24â¯h. After treatment, we evaluated cell viability, apoptosis, aryl hydrocarbon receptor (AhR) protein and cytochrome P450 (CYP) gene expression, mitochondrial function, including mitochondrial DNA copy number (mtDNAcn), mitochondrial membrane potential (ΔΨm), intracellular adenosine triphosphate (iATP), and extracellular ATP (eATP), nitric oxide (NO), NLPR3 inflammasome proteins, and interleukin (IL)-1ß. We found that BaP upregulated the expression of AhR or CYP genes to varying degrees in all three cell lines. Exposure to BaP alone increased ΔΨm in all cell lines but decreased NO in BeWo and HTR-8/SVneo, iATP in HTR-8/SVneo, and cell viability in JEG-3, without affecting apoptosis. Under hypoxic conditions, BaP did not increase the expression of AhR and CYP genes in JEG-3 cells but increased CYP gene expression in two others. Pro-inflammatory conditions did not affect the response of the 3 cell lines to BaP with respect to the expression of CYP genes and changes in the mitochondrial function and NLRP3 inflammasome proteins. In addition, in HTR-8/SVneo cells, BaP increased IL-1ß secretion in the presence of hypoxia and poly(I:C). In conclusion, our results showed that BaP affected mitochondrial function in trophoblast cell lines by increasing ΔΨm. This increased ΔΨm may have rescued the trophoblast cells from activation of the NLRP3 inflammasome and apoptosis after BaP treatment. We also observed that different human trophoblast cell lines had cell type-dependent responses to BaP exposure under normoxia, hypoxia, or pro-inflammatory conditions.
Assuntos
Apoptose , Benzo(a)pireno , Sobrevivência Celular , Proteína 3 que Contém Domínio de Pirina da Família NLR , Placenta , Receptores de Hidrocarboneto Arílico , Trofoblastos , Humanos , Benzo(a)pireno/toxicidade , Placenta/efeitos dos fármacos , Placenta/citologia , Linhagem Celular , Feminino , Gravidez , Apoptose/efeitos dos fármacos , Trofoblastos/efeitos dos fármacos , Trofoblastos/metabolismo , Receptores de Hidrocarboneto Arílico/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Inflamassomos/efeitos dos fármacos , Inflamassomos/metabolismo , Mitocôndrias/efeitos dos fármacos , Inflamação/induzido quimicamente , Hipóxia Celular/efeitos dos fármacos , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Sistema Enzimático do Citocromo P-450/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genéticaRESUMO
PURPOSE: Physiological decidual senescence promotes embryo implantation, whereas pathological decidual senescence causes many pregnancy pathologies. The aim of this study was to evaluate the effect of rapamycin on decidual cell subpopulations and endometrial function in physiological and induced senescence and to investigate the decidual cell subpopulations present in physiological conditions during early pregnancy and implantation in mice. METHODS: Control, physiological decidualization (0.5 mM cAMP and 1 µM MPA added), and induced senescence (0.1 mM HU added) models with and without 200 nM rapamycin treatment were established using a human endometrial stromal cell line, and decidual cell subpopulations were analyzed by immunofluorescence and flow cytometry. The human extravillous trophoblast cell line AC-1M88 was also cultured in decidualization models, and spheroid expansion analysis was performed. In in vivo studies, decidual cell subpopulations were analyzed by immunofluorescence during early mouse pregnancy. RESULTS: The results revealed that rapamycin decreased DIO2 and ß-GAL expressions in physiological and induced senescence without FOXO1. Notably, in induced senescence, increased fragmentation was observed in AC-1M88 cells, and rapamycin treatment successfully attenuated the fragmentation of spheroids. We showed that the FOXO1-DIO2 signaling axis can trigger decidual senescence during early gestation and days of implantation in mice. CONCLUSIONS: Our study underlines the importance of rapamycin in modulating decidual cell subpopulations and endometrial tissue function during decidual senescence. The information obtained may provide insight into the pathologies of pregnancy seen due to decidual senescence and guide better treatment strategies for reproductive problems.
Assuntos
Senescência Celular , Decídua , Implantação do Embrião , Endométrio , Sirolimo , Feminino , Decídua/efeitos dos fármacos , Decídua/metabolismo , Sirolimo/farmacologia , Implantação do Embrião/efeitos dos fármacos , Camundongos , Gravidez , Animais , Humanos , Senescência Celular/efeitos dos fármacos , Endométrio/efeitos dos fármacos , Endométrio/patologia , Endométrio/metabolismo , Trofoblastos/efeitos dos fármacos , Trofoblastos/metabolismo , Trofoblastos/patologia , Transdução de Sinais/efeitos dos fármacos , Linhagem Celular , Proteína Forkhead Box O1/metabolismo , Proteína Forkhead Box O1/genéticaRESUMO
Triphenyl phosphate (TPhP), a chemical commonly found in human placenta and breast milk, has been shown to disturb the endocrine system. Our previous study confirmed that TPhP could accumulate in the placenta and interference with placental lipid metabolism and steroid hormone synthesis, as well as induce endoplasmic reticulum (ER) stress through PPARγ in human placental trophoblast JEG-3 cells. However, the molecular mechanism underlying this disruption remains unknown. Our study aimed to identify the role of the PPARγ/CD36 pathway in TPhP-induced steroid hormone disruption. We found that TPhP increased lipid accumulation, total cholesterol, low- and high-density protein cholesterol, progesterone, estradiol, glucocorticoid, and aldosterone levels, and genes related to steroid hormones synthesis, including 3ßHSD1, 17ßHSD1, CYP11A, CYP19, and CYP21. These effects were largely blocked by co-exposure with either a PPARγ antagonist GW9662 or knockdown of CD36 using siRNA (siCD36). Furthermore, an ER stress inhibitor 4-PBA attenuated the effect of TPhP on progesterone and glucocorticoid levels, and siCD36 reduced ER stress-related protein levels induced by TPhP, including BiP, PERK, and CHOP. These findings suggest that ER stress may also play a role in the disruption of steroid hormone synthesis by TPhP. As our study has shed light on the PPARγ/CD36 pathway's involvement in the disturbance of steroid hormone biosynthesis by TPhP in the JEG-3 cells, further investigations of the potential impacts on the placental function and following birth outcome are warranted.
Assuntos
Antígenos CD36 , Trofoblastos , Feminino , Humanos , Antígenos CD36/metabolismo , Antígenos CD36/genética , Linhagem Celular , Disruptores Endócrinos/toxicidade , Estresse do Retículo Endoplasmático/efeitos dos fármacos , PPAR gama/metabolismo , PPAR gama/genética , Transdução de Sinais/efeitos dos fármacos , Trofoblastos/efeitos dos fármacos , Trofoblastos/metabolismoRESUMO
BACKGROUND: Asiaticoside (AS) has been reported to improve the changes induced by high glucose stimulation, and it may have potential therapeutic effects on gestational diabetes mellitus (GDM). This study aims to explore the effect of AS on the cell model of GDM and the action mechanism of the PI3K/AKT pathway. METHODS: The GDM model was established in HTR-8/Svneo cells with a high glucose (HG) medium. After the cytotoxicity assay of AS, cells were divided into the control group, HG group and HG + AS group to conduct control experiment in cells. The cell proliferation and migration were detected by CCK-8 assay and scratch test, respectively. The mRNA levels of PI3K, AKT2, mTORC1, and GLUT4 in PI3K/AKT signalling pathway were measured by RT-PCR, and the protein expressions of these signalling molecules were monitored by western blot. RESULTS: AS showed a promotion effect on the cell proliferation rate of HTR-8/Svneo cells, and 80 µmol/L AS with a treatment time of 48 h had no cytotoxicity. The cell proliferation rate, migration rate, mRNA levels and protein expressions of PI3K, AKT2, mTORC1, and GLUT4 in the HG group were significantly lower than those in the control group, which were significantly increased in the HG + AS group (p < 0.05). CONCLUSIONS: AS can facilitate the cell proliferation and migration in the cell model of GDM, and might play a role in GDM treatment via PI3K/AKT pathway.
Asiaticoside possesses various pharmacological effects and has been reported to show a beneficial effect on the treatment of diabetes mellitus. This research firstly investigated the effect and mechanism of asiaticoside on gestational diabetes mellitus, and found that asiaticoside could facilitate the cell proliferation and migration of HTR-8/Svneo cells treated with high glucose, and affect the signalling molecules of PI3K/AKT pathway. Therefore, asiaticoside may be a novel useful therapeutic drug in the treatment of gestational diabetes mellitus.
Assuntos
Movimento Celular , Proliferação de Células , Diabetes Gestacional , Fosfatidilinositol 3-Quinases , Proteínas Proto-Oncogênicas c-akt , Transdução de Sinais , Triterpenos , Humanos , Diabetes Gestacional/metabolismo , Feminino , Gravidez , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proliferação de Células/efeitos dos fármacos , Triterpenos/farmacologia , Transdução de Sinais/efeitos dos fármacos , Fosfatidilinositol 3-Quinases/metabolismo , Movimento Celular/efeitos dos fármacos , Linhagem Celular , Trofoblastos/efeitos dos fármacos , Trofoblastos/metabolismo , Glucose/farmacologia , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismoRESUMO
Placental trophoblast cells are potentially at risk from circulating endocrine-disrupting chemicals, such as bisphenol A (BPA). To understand how BPA and the reputedly more inert bisphenol S (BPS) affect the placenta, C57BL6J mouse dams were fed 200 µg/kg body weight BPA or BPS daily for 2 wk and then bred. They continued to receive these chemicals until embryonic day 12.5, whereupon placental samples were collected and compared with unexposed controls. BPA and BPS altered the expression of an identical set of 13 genes. Both exposures led to a decrease in the area occupied by spongiotrophoblast relative to trophoblast giant cells (GCs) within the junctional zone, markedly reduced placental serotonin (5-HT) concentrations, and lowered 5-HT GC immunoreactivity. Concentrations of dopamine and 5-hydroxyindoleacetic acid, the main metabolite of serotonin, were increased. GC dopamine immunoreactivity was increased in BPA- and BPS-exposed placentas. A strong positive correlation between 5-HT+ GCs and reductions in spongiotrophoblast to GC area suggests that this neurotransmitter is essential for maintaining cells within the junctional zone. In contrast, a negative correlation existed between dopamine+ GCs and reductions in spongiotrophoblast to GC area ratio. These outcomes lead to the following conclusions. First, BPS exposure causes almost identical placental effects as BPA. Second, a major target of BPA/BPS is either spongiotrophoblast or GCs within the junctional zone. Third, imbalances in neurotransmitter-positive GCs and an observed decrease in docosahexaenoic acid and estradiol, also occurring in response to BPA/BPS exposure, likely affect the placental-brain axis of the developing mouse fetus.
Assuntos
Compostos Benzidrílicos/toxicidade , Encéfalo/efeitos dos fármacos , Disruptores Endócrinos/toxicidade , Fenóis/toxicidade , Sulfonas/toxicidade , Trofoblastos/efeitos dos fármacos , Animais , Dopamina/metabolismo , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Serotonina/metabolismo , Trofoblastos/metabolismoRESUMO
The development of pathologies during pregnancy, including pre-eclampsia, hypertension and fetal growth restriction (FGR), often originates from poor functioning of the placenta. In vivo models of maternal stressors, such as nutrient deficiency, and placental insufficiency often focus on inadequate growth of the fetus and placenta in late gestation. These studies rarely investigate the origins of poor placental formation in early gestation, including those affecting the pre-implantation embryo and/or the uterine environment. The current study characterises the impact on blastocyst, uterine and placental outcomes in a rat model of periconceptional alcohol exposure, in which 12.5% ethanol is administered in a liquid diet from 4â days before until 4â days after conception. We show female-specific effects on trophoblast differentiation, embryo-uterine communication, and formation of the placental vasculature, resulting in markedly reduced placental volume at embryonic day 15. Both sexes exhibited reduced trophectoderm pluripotency and global hypermethylation, suggestive of inappropriate epigenetic reprogramming. Furthermore, evidence of reduced placental nutrient exchange and reduced pre-implantation maternal plasma choline levels offers significant mechanistic insight into the origins of FGR in this model.