Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 391
Filtrar
1.
Proc Natl Acad Sci U S A ; 120(3): e2207595120, 2023 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-36623178

RESUMO

Over the past two decades, multiple countries with high vaccine coverage have experienced resurgent outbreaks of mumps. Worryingly, in these countries, a high proportion of cases have been among those who have completed the recommended vaccination schedule, raising alarm about the effectiveness of existing vaccines. Two putative mechanisms of vaccine failure have been proposed as driving observed trends: 1) gradual waning of vaccine-derived immunity (necessitating additional booster doses) and 2) the introduction of novel viral genotypes capable of evading vaccinal immunity. Focusing on the United States, we conduct statistical likelihood-based hypothesis testing using a mechanistic transmission model on age-structured epidemiological, demographic, and vaccine uptake time series data. We find that the data are most consistent with the waning hypothesis and estimate that 32.8% (32%, 33.5%) of individuals lose vaccine-derived immunity by age 18 y. Furthermore, we show using our transmission model how waning vaccine immunity reproduces qualitative and quantitatively consistent features of epidemiological data, namely 1) the shift in mumps incidence toward older individuals, 2) the recent recurrence of mumps outbreaks, and 3) the high proportion of mumps cases among previously vaccinated individuals.


Assuntos
Caxumba , Vacinas , Humanos , Estados Unidos/epidemiologia , Adolescente , Caxumba/epidemiologia , Caxumba/prevenção & controle , Funções Verossimilhança , Vírus da Caxumba/genética , Causalidade , Surtos de Doenças , Vacinação
2.
Proc Natl Acad Sci U S A ; 119(33): e2201616119, 2022 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-35895717

RESUMO

With the rapid increase in SARS-CoV-2 cases in children, a safe and effective vaccine for this population is urgently needed. The MMR (measles/mumps/rubella) vaccine has been one of the safest and most effective human vaccines used in infants and children since the 1960s. Here, we developed live attenuated recombinant mumps virus (rMuV)-based SARS-CoV-2 vaccine candidates using the MuV Jeryl Lynn (JL2) vaccine strain backbone. The soluble prefusion SARS-CoV-2 spike protein (preS) gene, stablized by two prolines (preS-2P) or six prolines (preS-6P), was inserted into the MuV genome at the P-M or F-SH gene junctions in the MuV genome. preS-6P was more efficiently expressed than preS-2P, and preS-6P expression from the P-M gene junction was more efficient than from the F-SH gene junction. In mice, the rMuV-preS-6P vaccine was more immunogenic than the rMuV-preS-2P vaccine, eliciting stronger neutralizing antibodies and mucosal immunity. Sera raised in response to the rMuV-preS-6P vaccine neutralized SARS-CoV-2 variants of concern, including the Delta variant equivalently. Intranasal and/or subcutaneous immunization of IFNAR1-/- mice and golden Syrian hamsters with the rMuV-preS-6P vaccine induced high levels of neutralizing antibodies, mucosal immunoglobulin A antibody, and T cell immune responses, and were completely protected from challenge by both SARS-CoV-2 USA-WA1/2020 and Delta variants. Therefore, rMuV-preS-6P is a highly promising COVID-19 vaccine candidate, warranting further development as a tetravalent MMR vaccine, which may include protection against SARS-CoV-2.


Assuntos
Vacinas contra COVID-19 , COVID-19 , Vacina contra Sarampo-Caxumba-Rubéola , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus , Eficácia de Vacinas , Animais , Anticorpos Neutralizantes/sangue , Anticorpos Antivirais/sangue , COVID-19/prevenção & controle , Vacinas contra COVID-19/genética , Vacinas contra COVID-19/imunologia , Imunogenicidade da Vacina , Vacina contra Sarampo-Caxumba-Rubéola/genética , Vacina contra Sarampo-Caxumba-Rubéola/imunologia , Mesocricetus , Camundongos , Vírus da Caxumba/genética , Vírus da Caxumba/imunologia , Prolina/genética , SARS-CoV-2/genética , SARS-CoV-2/imunologia , Glicoproteína da Espícula de Coronavírus/genética , Glicoproteína da Espícula de Coronavírus/imunologia , Vacinas Atenuadas/genética , Vacinas Atenuadas/imunologia
3.
J Med Virol ; 96(8): e29856, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39135476

RESUMO

Mumps is a vaccine-preventable acute viral infectious disease. To understand the incidence of mumps and population immunity in Quzhou City after measles mumps rubella vaccine (MMR) was included in the immunization program, we analyzed the epidemiological characteristics of mumps cases from 2009 to 2023 and a cross-sectional serosurvey of IgG antibodies to mumps conducted in 2024. We found that 15 years after the MMR vaccine was included in the immunization program, the incidence of mumps was significantly reduced in all populations, but the incidence remained highest in vaccinated children aged 0-12 years. Vaccine escape may explain the high incidence of mumps in highly vaccinated populations. Updating vaccines or developing a new vaccine that targets multiple viral genotypes may be necessary to improve the effectiveness of the vaccine against infection and fully control infections and outbreaks. The positive rate and concentration of mumps IgG antibody were inconsistent with the incidence data. mumps IgG antibody is not an ideal substitute for immunity and cannot be used to accurately predict whether a target population is susceptible or protected. Natural infections may provide longer-lasting immunity than vaccination.


Assuntos
Anticorpos Antivirais , Programas de Imunização , Imunoglobulina G , Vacina contra Sarampo-Caxumba-Rubéola , Caxumba , Humanos , Caxumba/epidemiologia , Caxumba/prevenção & controle , Caxumba/imunologia , Vacina contra Sarampo-Caxumba-Rubéola/imunologia , Vacina contra Sarampo-Caxumba-Rubéola/administração & dosagem , Pré-Escolar , Lactente , Anticorpos Antivirais/sangue , Criança , Feminino , Incidência , Adolescente , Imunoglobulina G/sangue , Masculino , Estudos Transversais , Adulto Jovem , Adulto , China/epidemiologia , Estudos Soroepidemiológicos , Pessoa de Meia-Idade , Vírus da Caxumba/imunologia , Vírus da Caxumba/genética , Recém-Nascido
4.
BMC Infect Dis ; 24(1): 718, 2024 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-39039455

RESUMO

Mumps is a vaccine-preventable disease with high contagious capability. Its incidence declined rapidly since one dose of mumps vaccine was introduced into Expanded Program of Immunization (EPI) in 2008 in China. Nonetheless, the outbreaks of mumps remain frequent in China. Here we aim to assess herd immunity level followed by one-dose mumps ingredient vaccine and to elucidate the genetic characteristics of mumps viruses circulating in the post vaccine era in Jiangsu province of China. The complete sequences of mumps virus small hydrophobic(SH) gene were amplified and sequenced; coalescent-based Bayesian method was used to perform phylogenetic analysis with BEAST 1.84 software. Commercially available indirect enzyme-linked immune-sorbent IgG assay was used for the quantitative detection of IgG antibody against mumps virus. Our results show that genotype F was the predominant mumps viruses and belonged to indigenous spread, and most of Jiangsu sequences clustered together and formed a monophyly. The prevalence of mumps reached a peak in 2012 and subsequently declined, which presented an obvious different trajectory with virus circulating in other regions of China. The gene diversity of viruses circulating in Jiangsu province was far less than those in China. The antibody prevalence reached 70.42% in the general population during 2018 to 2020. The rising trend of antibody level was also observed. Although mumps antibody prevalence does not reach expected level, mumps virus faces higher pressure in Jiangsu province than the whole of China. To reduce further the prevalence of mumps viruses, two doses of mumps vaccine should be involved into EPI.


Assuntos
Anticorpos Antivirais , Vacina contra Caxumba , Vírus da Caxumba , Caxumba , Filogenia , Vírus da Caxumba/genética , Vírus da Caxumba/imunologia , Vírus da Caxumba/classificação , Humanos , China/epidemiologia , Caxumba/epidemiologia , Caxumba/virologia , Caxumba/imunologia , Caxumba/prevenção & controle , Anticorpos Antivirais/sangue , Vacina contra Caxumba/administração & dosagem , Vacina contra Caxumba/imunologia , Adulto , Adulto Jovem , Feminino , Masculino , Genótipo , Adolescente , Criança , Imunoglobulina G/sangue , Pessoa de Meia-Idade , Pré-Escolar , Imunidade Coletiva , Variação Genética , Proteínas Virais
5.
J Virol ; 96(8): e0198321, 2022 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-35389265

RESUMO

Mumps virus (MuV) causes a highly contagious human disease characterized by the enlargement of the parotid glands. In severe cases, mumps can lead to neurological complications such as aseptic meningitis and encephalitis. Vaccination with the attenuated Jeryl Lynn (JL) MuV vaccine has dramatically reduced the incidence of MuV infection. Recently, large outbreaks have occurred in vaccinated populations. The vaccine strain JL was generated from genotype A, while most current circulating strains belong to genotype G. In this study, we examined the immunogenicity and longevity of genotype G-based vaccines. We found that our recombinant genotype G-based vaccines provide robust neutralizing titers toward genotype G for up to 1 year in mice. In addition, we demonstrated that a third dose of a genotype G-based vaccine following two doses of JL immunization significantly increases neutralizing titers toward the genotype G strain. Our data suggest that after two doses of JL vaccination, which most people have received, a third dose of a genotype G-based vaccine can generate immunity against a genotype G strain. IMPORTANCE At present, most individuals have received two doses of the measles, mumps, and rubella (MMR) vaccine, which contains genotype A mumps vaccine. One hurdle in developing a new mumps vaccine against circulating genotype G virus is whether the new genotype G vaccine can generate immunity in humans that are immunized against genotype A virus. This work demonstrates that a novel genotype G-based vaccine can be effective in animals which received two doses of genotype A-based vaccine, suggesting that the lead genotype G vaccine may induce anti-G immunity in humans who have received two doses of the current vaccine, providing support for testing this vaccine in humans.


Assuntos
Sarampo , Caxumba , Animais , Anticorpos Antivirais , Genótipo , Humanos , Lactente , Sarampo/prevenção & controle , Vacina contra Sarampo-Caxumba-Rubéola , Camundongos , Caxumba/prevenção & controle , Vacina contra Caxumba/genética , Vírus da Caxumba/genética
6.
PLoS Biol ; 18(2): e3000611, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-32045407

RESUMO

Unusually large outbreaks of mumps across the United States in 2016 and 2017 raised questions about the extent of mumps circulation and the relationship between these and prior outbreaks. We paired epidemiological data from public health investigations with analysis of mumps virus whole genome sequences from 201 infected individuals, focusing on Massachusetts university communities. Our analysis suggests continuous, undetected circulation of mumps locally and nationally, including multiple independent introductions into Massachusetts and into individual communities. Despite the presence of these multiple mumps virus lineages, the genomic data show that one lineage has dominated in the US since at least 2006. Widespread transmission was surprising given high vaccination rates, but we found no genetic evidence that variants arising during this outbreak contributed to vaccine escape. Viral genomic data allowed us to reconstruct mumps transmission links not evident from epidemiological data or standard single-gene surveillance efforts and also revealed connections between apparently unrelated mumps outbreaks.


Assuntos
Surtos de Doenças , Genoma Viral/genética , Vírus da Caxumba/genética , Caxumba/epidemiologia , Caxumba/transmissão , Genótipo , Humanos , Epidemiologia Molecular , Caxumba/virologia , Vírus da Caxumba/classificação , Mutação , Filogenia , Análise de Sequência de DNA , Estados Unidos/epidemiologia , Vacinação/estatística & dados numéricos , Proteínas Virais/genética
7.
Microbiol Immunol ; 67(1): 44-47, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36259144

RESUMO

The reverse genetics system is a very powerful tool for analyzing the molecular mechanisms of viral propagation and pathogenesis. However, full-length genome plasmid construction is highly time-consuming and laborious, and undesired mutations may be introduced by Escherichia coli. This study shows a very rapid E. coli-free method of full-genome construction using the mumps virus as an example. This method was able to reduce dramatically the time for full-genome construction, which was used very efficiently for virus rescue, from several days or more to ~2 days, with a similar accuracy and yield to the conventional method using E. coli/plasmid.


Assuntos
Vírus da Caxumba , Genética Reversa , Vírus da Caxumba/genética , Genética Reversa/métodos , Plasmídeos/genética , Genoma Viral , Genes Virais , Escherichia coli/genética , Clonagem Molecular
8.
Virus Genes ; 59(4): 515-523, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37133580

RESUMO

Mumps is a vaccine-preventable disease, and research on the vaccine's efficacy has recently indicated declining efficacy that has failed to protect against primary infections or reinfections, leading to a global resurgence in nations that use mumps vaccine in their national immunization programmes (NIPs). Lack of reports on its infection, documentation and published studies prevents it from being recognized as a public health issue in India. The waning of immunity is ascribed to the changes between the circulating and vaccine strains. The goal of the current study was to describe the circulating MuV strains in the Dibrugarh district of Assam, India, from 2016 to 2019. Blood samples were examined for IgM antibodies, and throat swab samples were put through Taqman assay for molecular detection. The small hydrophobic (SH) gene was targeted for genotyping through sequencing, and its genetic variations and phylogenetic analysis were carried out. Mumps RNA was found in 42 cases, and Mumps IgM in 14, of which 60% (25/42) of the cases were male and 40% (17/42) were female mostly affecting children between the ages of 6 and 12. Sequence and phylogeny analyses of SH gene revealed Genotypes C (83%) and G (17%) were simultaneously circulating during the study period. The study offers crucial genetic baseline information for the creation of Mumps prevention and control measures. Therefore, based on the research, it is clear that developing an effective vaccination strategy should take into account all currently prevalent genotypes in order to provide better protection against the disease's comeback.


Assuntos
Caxumba , Vacinas , Criança , Masculino , Humanos , Feminino , Vírus da Caxumba/genética , Caxumba/epidemiologia , Caxumba/prevenção & controle , Filogenia , RNA Viral/genética , Genótipo , Índia/epidemiologia , Imunoglobulina M
9.
J Infect Dis ; 227(1): 151-160, 2022 12 28.
Artigo em Inglês | MEDLINE | ID: mdl-35524966

RESUMO

MuV caused three epidemic waves in Spain since genotype G emerged in 2005, despite high vaccination coverage. SH gene sequencing according to WHO protocols allowed the identification of seven relevant variants and 88 haplotypes. While the originally imported MuVi/Sheffield.GBR/1.05/-variant prevailed during the first two waves, it was subsequently replaced by other variants originated by either local evolution or importation, according to the additional analysis of hypervariable NCRs. The time of emergence of the MRCA of each MuV variant clade was concordant with the data of the earliest sequence. The analysis of Shannon entropy showed an accumulation of variability on six particular positions as the cause of the increase on the number of circulating SH variants. Consequently, SH gene sequencing needs to be complemented with other more variable markers for mumps surveillance immediately after the emergence of a new genotype, but the subsequent emergence of new SH variants turns it unnecessary.


Assuntos
Vírus da Caxumba , Caxumba , Humanos , Vírus da Caxumba/genética , Espanha/epidemiologia , Filogenia , Caxumba/epidemiologia , Caxumba/prevenção & controle , Genótipo
10.
J Virol ; 94(2)2020 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-31619562

RESUMO

Mumps virus (MuV), an enveloped negative-strand RNA virus belonging to the family Paramyxoviridae, enters the host cell through membrane fusion mediated by two viral envelope proteins, an attachment protein hemagglutinin-neuraminidase (MuV-HN) and a fusion (F) protein. However, how the binding of MuV-HN to glycan receptors triggers membrane fusion is not well understood. The crystal structure of the MuV-HN head domain forms a tetramer (dimer of dimers) like other paramyxovirus attachment proteins. In the structure, a sulfate ion (SO42-) was found at the interface between two dimers, which may be replaced by a hydrogen phosphate ion (HPO42-) under physiological conditions. The anion is captured by the side chain of a positively charged arginine residue at position 139 of one monomer each from both dimers. Substitution of alanine or lysine for arginine at this position compromised the fusion support activity of MuV-HN without affecting its cell surface expression, glycan-receptor binding, and interaction with the F protein. Furthermore, the substitution appeared to affect the tetramer formation of the head domain as revealed by blue native-PAGE analysis. These results, together with our previous similar findings with the measles virus attachment protein head domain, suggest that the dimer-dimer interaction within the tetramer may play an important role in triggering membrane fusion during paramyxovirus entry.IMPORTANCE Despite the use of effective live vaccines, mumps outbreaks still occur worldwide. Mumps virus (MuV) infection typically causes flu-like symptoms and parotid gland swelling but sometimes leads to orchitis, oophoritis, and neurological complications, such as meningitis, encephalitis, and deafness. MuV enters the host cell through membrane fusion mediated by two viral proteins, a receptor-binding attachment protein, and a fusion protein, but its detailed mechanism is not fully understood. In this study, we show that the tetramer (dimer of dimers) formation of the MuV attachment protein head domain is supported by an anion located at the interface between two dimers and that the dimer-dimer interaction plays an important role in triggering the activation of the fusion protein and causing membrane fusion. These results not only further our understanding of MuV entry but provide useful information about a possible target for antiviral drugs.


Assuntos
Fusão de Membrana , Vírus da Caxumba/metabolismo , Multimerização Proteica , Proteínas Virais de Fusão/metabolismo , Ligação Viral , Internalização do Vírus , Substituição de Aminoácidos , Células HEK293 , Humanos , Vírus da Caxumba/genética , Mutação de Sentido Incorreto , Fosfatos/metabolismo , Domínios Proteicos , Sulfatos/metabolismo , Proteínas Virais de Fusão/genética
11.
J Virol ; 94(22)2020 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-32907974

RESUMO

The mumps virus (MuV) fusion protein (F) plays a crucial role for the entry process and spread of infection by mediating fusion between viral and cellular membranes as well as between infected and neighboring cells, respectively. The fusogenicity of MuV differs depending on the strain and might correlate with the virulence; however, it is unclear which mechanisms contribute to the differentiated fusogenicity. The cleavage motif of MuV F is highly conserved among all strains, except the amino acid residue at position 8 (P8) that shows a certain variability with a total of four amino acid variants (leucine [L], proline [P], serine [S], and threonine [T]). We demonstrate that P8 affects the proteolytic processing and the fusogenicity of MuV F. The presence of L or S at P8 resulted in a slower proteolysis of MuV F by furin and a reduced ability to mediate cell-cell fusion. However, virus-cell fusion was more efficient for F proteins harboring L or S at P8, suggesting that P8 contributes to the mechanism of viral spread: P and T enable a rapid spread of infection by cell-to-cell fusion, whereas viruses harboring L or S at P8 spread preferentially by the release of infectious viral particles. Our study provides novel insights into the fusogenicity of MuV and its influence on the mechanisms of virus spread within infected tissues. Assuming a correlation between MuV fusogenicity and virulence, sequence information on the amino acid residue at P8 might be helpful to estimate the virulence of circulating and emerging strains.IMPORTANCE Mumps virus (MuV) is the causative agent of the highly infectious disease mumps. Mumps is mainly associated with mild symptoms, but severe complications such as encephalitis, meningitis, or orchitis can also occur. There is evidence that the virulence of different MuV strains and variants might correlate with the ability of the fusion protein (F) to mediate cell-to-cell fusion. However, the relation between virulence and fusogenicity or the mechanisms responsible for the varied fusogenicity of different MuV strains are incompletely understood. Here, we focused on the amino acid residue at position 8 (P8) of the proteolytic cleavage site of MuV F, because this amino acid residue shows a striking variability depending on the genotype of MuV. The P8 residue has a significant effect on the proteolytic processing and fusogenicity of MuV F and might thereby determine the route of viral spread within infected tissues.


Assuntos
Aminoácidos/química , Vírus da Caxumba/metabolismo , Proteólise , Proteínas Virais de Fusão/química , Proteínas Virais de Fusão/metabolismo , Animais , Fusão Celular , Chlorocebus aethiops , Furina/metabolismo , Genótipo , Células HEK293 , Humanos , Cinética , Caxumba/virologia , Vírus da Caxumba/genética , Homologia de Sequência de Aminoácidos , Células Vero , Proteínas Virais de Fusão/genética , Internalização do Vírus
12.
J Virol ; 94(12)2020 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-32295907

RESUMO

Mumps virus (MuV) caused the most viral meningitis before mass immunization. Unfortunately, MuV has reemerged in the United States in the past several years. MuV is a member of the genus Rubulavirus, in the family Paramyxoviridae, and has a nonsegmented negative-strand RNA genome. The viral RNA-dependent RNA polymerase (vRdRp) of MuV consists of the large protein (L) and the phosphoprotein (P), while the nucleocapsid protein (NP) encapsulates the viral RNA genome. These proteins make up the replication and transcription machinery of MuV. The P protein is phosphorylated by host kinases, and its phosphorylation is important for its function. In this study, we performed a large-scale small interfering RNA (siRNA) screen targeting host kinases that regulated MuV replication. The human kinase ribosomal protein S6 kinase beta-1 (RPS6KB1) was shown to play a role in MuV replication and transcription. We have validated the role of RPS6KB1 in regulating MuV using siRNA knockdown, an inhibitor, and RPS6KB1 knockout cells. We found that MuV grows better in cells lacking RPS6KB1, indicating that it downregulates viral growth. Furthermore, we detected an interaction between the MuV P protein and RPS6KB1, suggesting that RPS6KB1 directly regulates MuV replication and transcription.IMPORTANCE Mumps virus is an important human pathogen. In recent years, MuV has reemerged in the United State, with outbreaks occurring in young adults who have been vaccinated. Our work provides insight into a previously unknown mumps virus-host interaction. RPS6KB1 negatively regulates MuV replication, likely through its interaction with the P protein. Understanding virus-host interactions can lead to novel antiviral drugs and enhanced vaccine production.


Assuntos
Genoma Viral , Vírus da Caxumba/genética , Proteínas do Nucleocapsídeo/genética , Fosfoproteínas/genética , RNA Polimerase Dependente de RNA/genética , Proteínas Quinases S6 Ribossômicas 70-kDa/genética , Proteínas Virais/genética , Animais , Chlorocebus aethiops , Regulação da Expressão Gênica , Células HEK293 , Células HeLa , Interações Hospedeiro-Patógeno/genética , Humanos , Vírus da Caxumba/metabolismo , Proteínas do Nucleocapsídeo/metabolismo , Fosfoproteínas/metabolismo , Fosforilação , Ligação Proteica , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , RNA Polimerase Dependente de RNA/metabolismo , Proteínas Quinases S6 Ribossômicas 70-kDa/antagonistas & inibidores , Proteínas Quinases S6 Ribossômicas 70-kDa/metabolismo , Transdução de Sinais , Células Vero , Proteínas Virais/metabolismo , Replicação Viral
13.
J Virol ; 94(12)2020 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-32295904

RESUMO

Mumps virus (MuV), an enveloped RNA virus of the Paramyxoviridae family and the causative agent of mumps, affects the salivary glands and other glandular tissues as well as the central nervous system. The virus enters the cell by inducing the fusion of its envelope with the plasma membrane of the target cell. Membrane fusion is mediated by MuV envelope proteins: the hemagglutinin-neuraminidase and fusion (F) protein. Cleavage of the MuV F protein (MuV-F) into two subunits by the cellular protease furin is a prerequisite for fusion and virus infectivity. Here, we show that 293T (a derivative of HEK293) cells do not produce syncytia upon expression of MuV envelope proteins or MuV infection. This failure is caused by the inefficient MuV-F cleavage despite the presence of functional furin in 293T cells. An expression cloning strategy revealed that overexpression of lysosome-associated membrane proteins (LAMPs) confers on 293T cells the ability to produce syncytia upon expression of MuV envelope proteins. The LAMP family comprises the ubiquitously expressed LAMP1 and LAMP2, the interferon-stimulated gene product LAMP3, and the cell type-specific proteins. The expression level of the LAMP3 gene, but not of LAMP1 and LAMP2 genes, differed markedly between 293T and HEK293 cells. Overexpression of LAMP1, LAMP2, or LAMP3 allowed 293T cells to process MuV-F efficiently. Furthermore, these LAMPs were found to interact with both MuV-F and furin. Our results indicate that LAMPs support the furin-mediated cleavage of MuV-F and that, among them, LAMP3 may be critical for the process, at least in certain cells.IMPORTANCE The cellular protease furin mediates proteolytic cleavage of many host and pathogen proteins and plays an important role in viral envelope glycoprotein maturation. MuV, an enveloped RNA virus of the Paramyxoviridae family and an important human pathogen, enters the cell through the fusion of its envelope with the plasma membrane of the target cell. Membrane fusion is mediated by the viral attachment protein and the F protein. Cleavage of MuV-F into two subunits by furin is a prerequisite for fusion and virus infectivity. Here, we show that LAMPs support the furin-mediated cleavage of MuV-F. Expression levels of LAMPs affect the processing of MuV-F and MuV-mediated membrane fusion. Among LAMPs, the interferon-stimulated gene product LAMP3 is most critical in certain cells. Our study provides potential targets for anti-MuV therapeutics.


Assuntos
Furina/genética , Interações Hospedeiro-Patógeno/genética , Proteínas de Membrana Lisossomal/genética , Lisossomos/virologia , Vírus da Caxumba/genética , Proteínas de Neoplasias/genética , Proteínas Virais de Fusão/genética , Células A549 , Animais , Membrana Celular/metabolismo , Membrana Celular/virologia , Chlorocebus aethiops , Furina/metabolismo , Regulação da Expressão Gênica , Células Gigantes/química , Células Gigantes/metabolismo , Células HEK293 , Proteína HN/genética , Proteína HN/metabolismo , Células HeLa , Humanos , Proteína 2 de Membrana Associada ao Lisossomo/genética , Proteína 2 de Membrana Associada ao Lisossomo/metabolismo , Proteínas de Membrana Lisossomal/metabolismo , Lisossomos/metabolismo , Vírus da Caxumba/metabolismo , Proteínas de Neoplasias/metabolismo , Ligação Proteica , Proteólise , Transdução de Sinais , Células Vero , Proteínas Virais de Fusão/metabolismo , Internalização do Vírus
14.
PLoS Pathog ; 15(5): e1007749, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-31121004

RESUMO

The regulation of paramyxovirus RNA synthesis by host proteins is poorly understood. Here, we identified a novel regulation mechanism of paramyxovirus RNA synthesis by the Hsp90 co-chaperone R2TP complex. We showed that the R2TP complex interacted with the paramyxovirus polymerase L protein and that silencing of the R2TP complex led to uncontrolled upregulation of mumps virus (MuV) gene transcription but not genome replication. Regulation by the R2TP complex was critical for MuV replication and evasion of host innate immune responses. The R2TP complex also regulated measles virus (MeV) RNA synthesis, but its function was inhibitory and not beneficial to MeV, as MeV evaded host innate immune responses in the absence of the R2TP complex. The identification of the R2TP complex as a critical host factor sheds new light on the regulation of paramyxovirus RNA synthesis.


Assuntos
Proteínas de Choque Térmico HSP90/metabolismo , Interações Hospedeiro-Patógeno , Vírus da Caxumba/genética , Caxumba/genética , RNA Viral/biossíntese , Proteínas Virais/metabolismo , Replicação Viral , Células A549 , Proteínas de Choque Térmico HSP90/genética , Humanos , Caxumba/virologia , Proteínas Virais/genética
15.
BMC Infect Dis ; 21(1): 1035, 2021 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-34607555

RESUMO

BACKGROUND: From October 2019-March 2020, several clusters of mumps cases were identified in the Netherlands. Our objective was to describe cluster-associated mumps virus transmission using epidemiological and molecular information in order to help future mumps outbreak investigation and control efforts. METHODS: An epidemiological cluster includes ≥ 2 mumps cases with at least an epidemiological-link to a laboratory-confirmed mumps case. A molecular group includes ≥ 2 mumps cases with identical mumps virus sequences. Cases with symptom onset date between 1 October 2019 and 31 March 2020 reported through the National Notifiable Diseases Surveillance System were included. We described epidemiological and clinical characteristics of mumps cases. Sequence data was obtained from selected regions of mumps virus genomes (2270 nucleotides). Associations between epidemiological and molecular information were investigated. RESULTS: In total, 102 mumps cases were notified (90% laboratory-confirmed, 10% epidemiologically-linked). 71 out of 102 cases were identified as part of an epidemiological cluster and/or molecular group. Twenty-one (30%) of 71 cases were identified solely from epidemiological information, 25 (35%) solely from molecular surveillance, and 25 (35%) using both. Fourteen epidemiological clusters were identified containing a total of 46 (range: 2-12, median: 3) cases. Complete sequence data was obtained from 50 mumps genotype G viruses. Twelve molecular groups were identified containing 43 (range: 2-13) cases, dispersed geographically and timewise. Combined information grouped seven epidemiological clusters into two distinct molecular groups. The first lasting for 14 weeks, the other for 6. Additionally, one molecular group was detected, linked by geography and time but without an epidemiological-link. CONCLUSIONS: Combined epidemiological and molecular information indicated ongoing mumps virus transmission from multiple introductions for extended time periods. Sequence analysis provided valuable insights into epidemiological clustering. If combined information is available in a timely manner, this would improve outbreak detection, generate further insight into mumps transmission, and guide necessary control measures.


Assuntos
Vírus da Caxumba , Caxumba , Surtos de Doenças , Genótipo , Humanos , Caxumba/epidemiologia , Vírus da Caxumba/genética , Países Baixos/epidemiologia , Filogenia
16.
Epidemiol Infect ; 149: e205, 2021 08 27.
Artigo em Inglês | MEDLINE | ID: mdl-34446124

RESUMO

On 16-17 January 2020, four suspected mumps cases were reported to the local Public Health Authorities with an epidemiological link to a local school and football club. Of 18 suspected cases identified, 14 were included in this study. Laboratory results confirmed mumps virus as the cause and further sequencing identified genotype G. Our findings highlight that even with a high MMR vaccine coverage, mumps outbreaks in children and young adults can occur. Since most of the cases had documented immunity for mumps, we hypothesise that waning immunity or discordant mumps virus strains are likely explanations for this outbreak.


Assuntos
Surtos de Doenças , Vacina contra Sarampo-Caxumba-Rubéola/administração & dosagem , Vírus da Caxumba/imunologia , Caxumba/epidemiologia , Adolescente , Criança , Surtos de Doenças/prevenção & controle , Feminino , Genótipo , Humanos , Masculino , Vacina contra Sarampo-Caxumba-Rubéola/genética , Vacina contra Sarampo-Caxumba-Rubéola/imunologia , Caxumba/prevenção & controle , Caxumba/virologia , Vírus da Caxumba/genética , Vírus da Caxumba/patogenicidade , Portugal/epidemiologia , Vacinação/estatística & dados numéricos , Adulto Jovem
17.
J Infect Dis ; 221(3): 474-482, 2020 01 14.
Artigo em Inglês | MEDLINE | ID: mdl-31560392

RESUMO

BACKGROUND: The re-emergence of mumps among vaccinated young adults has become a global issue. Besides waning of antibody responses, suboptimal induction of T-cell responses may reduce protection. In a recent study, we observed a dominant polyfunctional CD8+ T-cell response after natural mumps virus (MuV) infection that was not present after vaccination. Unraveling the MuV epitope repertoire can provide insight in the specificity, functionality, and breadth of the T-cell response against MuV. METHODS: Peptides were eluted from human leukocyte antigen (HLA) class I molecules of MuV-infected cells and characterized by advanced mass spectrometry. Selected identified MuV peptides were tested for in vitro and ex vivo immunogenicity. RESULTS: In this study, we identified a broad landscape of 83 CD8+ T-cell epitopes of MuV, 41 of which were confirmed based on synthetic peptide standards. For 6 epitopes, we showed induction of an HLA-A*02-restriced CD8+ T-cell response. Moreover, robust T-cell responses against 5 selected MuV epitopes could be detected in all tested mumps patients using peptide/HLA-A*02:01 dextramers. CONCLUSIONS: The identified CD8+ T-cell epitopes will help to further characterize MuV-specific T-cell immunity after natural MuV infection or vaccination. These MuV epitopes may provide clues for a better understanding of, and possibly for preventing, mumps vaccine failure.We identified for the first time 41 mumps virus (MuV)-specific HLA-A*02 epitopes. For 6 epitopes, CD8+ T-cell responses were confirmed in T cells derived from several mumps cases, and MuV-specific CD8+ T cells could be identified by peptide/dextramer staining.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Epitopos de Linfócito T/imunologia , Vírus da Caxumba/imunologia , Caxumba/imunologia , Espectrometria de Massas em Tandem/métodos , Células Cultivadas , Cromatografia de Fase Reversa/métodos , Epitopos de Linfócito T/química , Genótipo , Antígeno HLA-A2/química , Antígeno HLA-A2/imunologia , Humanos , Interferon gama/biossíntese , Caxumba/patologia , Caxumba/virologia , Vírus da Caxumba/genética , Peptídeos/química , Peptídeos/imunologia , Adulto Jovem
18.
Uirusu ; 71(1): 71-78, 2021.
Artigo em Japonês | MEDLINE | ID: mdl-35526997

RESUMO

Mumps virus (MuV) is the causative agent of mumps, a common childhood illness characterized by fever and swelling of the salivary glands. Like other viral infections, a number of host proteins are thought to involve in MuV infection. We have shown the function of several host factors in MuV infection. The chaperone proteins, heat shock protein 70 (Hsp70) and Hsp90, interact with the P and L proteins that form the polymerase complex and function in the protein quality control of these viral proteins, and thus they are essential host factors in MuV RNA synthesis. The R2TP complex is a host factor that contributes to effective viral propagation by precise regulation of viral RNA synthesis and evasion of host immune responses, and Rab11 is a host factor involved in viral RNP trafficking to the plasma membrane. This article summarizes the functions of host factors involved in MuV infection based on our researches.


Assuntos
Vírus da Caxumba , Caxumba , Proteínas de Choque Térmico HSP70/metabolismo , Proteínas de Choque Térmico HSP90/metabolismo , Interações Hospedeiro-Patógeno , Humanos , Caxumba/genética , Vírus da Caxumba/genética , Vírus da Caxumba/metabolismo , RNA Viral/metabolismo , Proteínas Virais/metabolismo
19.
FASEB J ; 33(11): 12528-12540, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31450968

RESUMO

Mumps virus (MuV) has high tropism to the testis and may lead to male infertility. Sertoli cells are the major targets of MuV infection. However, the mechanisms by which MuV infection impairs male fertility and Sertoli cell function remain unclear. The present study elucidated the effect of MuV infection on the blood-testis barrier (BTB). The transepithelial electrical resistance of MuV-infected mouse Sertoli cells was monitored, and the expression of major proteins of the BTB was examined. We demonstrated that MuV infection disrupted the BTB by reducing the levels of occludin and zonula occludens 1. Sertoli cells derived from Tlr2-/- and Tnfa-/- mice were analyzed for mediating MuV-induced impairment. TLR2-mediated TNF-α production by Sertoli cells in response to MuV infection impaired BTB integrity. MuV-impaired BTB was not observed in Tlr2-/- and Tnfa-/- Sertoli cells. Moreover, an inhibitor of TNF-α, pomalidomide, prevents the disruption of BTB in response to MuV infection. FITC-labeled biotin tracing assay confirmed that BTB permeability and spermatogenesis were transiently impaired by MuV infection in vivo. These findings suggest that the disruption of the BTB could be one of the mechanisms underlying MuV-impaired male fertility, in which TNF-α could play a critical role.-Wu, H., Jiang, X., Gao, Y., Liu, W., Wang, F., Gong, M., Chen, R., Yu, X., Zhang, W., Gao, B., Song, C., Han, D. Mumps virus infection disrupts blood-testis barrier through the induction of TNF-α in Sertoli cells.


Assuntos
Barreira Hematotesticular/metabolismo , Vírus da Caxumba/metabolismo , Caxumba/metabolismo , Células de Sertoli/metabolismo , Espermatogênese , Fator de Necrose Tumoral alfa/metabolismo , Animais , Barreira Hematotesticular/patologia , Barreira Hematotesticular/virologia , Infertilidade Masculina/genética , Infertilidade Masculina/metabolismo , Infertilidade Masculina/patologia , Infertilidade Masculina/virologia , Masculino , Camundongos , Camundongos Knockout , Caxumba/genética , Caxumba/patologia , Vírus da Caxumba/genética , Células de Sertoli/patologia , Células de Sertoli/virologia , Receptor 2 Toll-Like/genética , Receptor 2 Toll-Like/metabolismo , Fator de Necrose Tumoral alfa/genética , Proteína da Zônula de Oclusão-1/genética , Proteína da Zônula de Oclusão-1/metabolismo
20.
Biologicals ; 67: 29-37, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32855039

RESUMO

Leningrad-Zagreb strain of mumps vaccine virus was grown on two different cell substrates viz. MRC-5 cells and Vero cells besides its original cell substrate i.e. Chicken Embryo Cells. Homogeneous virus pools prepared from each set of experiments were then lyophilized as per standard in-house protocol. Critical Quality Attributes (CQAs) such as the titer of the bulk vaccine and potency and stability of the lyophilized vaccine were then estimated using the CCID50 method to understand the lyophilization losses and thermal losses respectively in the vaccine. Another CQA viz. the genetic homogeneity of the vaccine was also tested using the single base extension method for identifying the nucleotides present at the three known locations of single nucleotide polymorphism (SNP). Comparison of CQA results across different cell substrates indicated encouraging results for Vero cell grown L-Zagreb virus compared to the MRC-5 cells grown L-Zagreb mumps virus. Significant improvement in productivity was also observed in the dynamic culture conditions compared to the static culture conditions. Progressive work in this research area can lead to development of a cGMP manufacturing process for mumps vaccine with easy scale up potential in future.


Assuntos
Reatores Biológicos , Vacina contra Caxumba/imunologia , Vírus da Caxumba/imunologia , Caxumba/imunologia , Animais , Linhagem Celular , Chlorocebus aethiops , Liofilização/métodos , Humanos , Caxumba/prevenção & controle , Caxumba/virologia , Vacina contra Caxumba/administração & dosagem , Vacina contra Caxumba/normas , Vírus da Caxumba/genética , Vírus da Caxumba/fisiologia , Controle de Qualidade , Vacinação , Vacinas Atenuadas/administração & dosagem , Vacinas Atenuadas/imunologia , Vacinas Atenuadas/normas , Células Vero , Cultura de Vírus/instrumentação , Cultura de Vírus/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA