Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
Nature ; 530(7590): 358-61, 2016 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-26887496

RESUMO

Retroviral integrase catalyses the integration of viral DNA into host target DNA, which is an essential step in the life cycle of all retroviruses. Previous structural characterization of integrase-viral DNA complexes, or intasomes, from the spumavirus prototype foamy virus revealed a functional integrase tetramer, and it is generally believed that intasomes derived from other retroviral genera use tetrameric integrase. However, the intasomes of orthoretroviruses, which include all known pathogenic species, have not been characterized structurally. Here, using single-particle cryo-electron microscopy and X-ray crystallography, we determine an unexpected octameric integrase architecture for the intasome of the betaretrovirus mouse mammary tumour virus. The structure is composed of two core integrase dimers, which interact with the viral DNA ends and structurally mimic the integrase tetramer of prototype foamy virus, and two flanking integrase dimers that engage the core structure via their integrase carboxy-terminal domains. Contrary to the belief that tetrameric integrase components are sufficient to catalyse integration, the flanking integrase dimers were necessary for mouse mammary tumour virus integrase activity. The integrase octamer solves a conundrum for betaretroviruses as well as alpharetroviruses by providing critical carboxy-terminal domains to the intasome core that cannot be provided in cis because of evolutionarily restrictive catalytic core domain-carboxy-terminal domain linker regions. The octameric architecture of the intasome of mouse mammary tumour virus provides new insight into the structural basis of retroviral DNA integration.


Assuntos
Microscopia Crioeletrônica , DNA Viral/metabolismo , DNA Viral/ultraestrutura , Integrases/química , Integrases/ultraestrutura , Vírus do Tumor Mamário do Camundongo/enzimologia , Multimerização Proteica , Domínio Catalítico , Cristalografia por Raios X , DNA Viral/química , Integrases/metabolismo , Vírus do Tumor Mamário do Camundongo/química , Vírus do Tumor Mamário do Camundongo/genética , Vírus do Tumor Mamário do Camundongo/ultraestrutura , Modelos Moleculares , Estrutura Quaternária de Proteína , Spumavirus/química , Spumavirus/enzimologia , Integração Viral
2.
Anal Chem ; 92(24): 15693-15698, 2020 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-33232116

RESUMO

The extracellular matrix (ECM) provides an architectural meshwork that surrounds and supports cells. The dysregulation of heavily post-translationally modified ECM proteins directly contributes to various diseases. Mass spectrometry (MS)-based proteomics is an ideal tool to identify ECM proteins and characterize their post-translational modifications, but ECM proteomics remains challenging owing to the extremely low solubility of the ECM. Herein, enabled by effective solubilization of ECM proteins using our recently developed photocleavable surfactant, Azo, we have developed a streamlined ECM proteomic strategy that allows fast tissue decellularization, efficient extraction and enrichment of ECM proteins, and rapid digestion prior to reversed-phase liquid chromatography (RPLC)-MS analysis. A total of 173 and 225 unique ECM proteins from mouse mammary tumors have been identified using 1D and 2D RPLC-MS/MS, respectively. Moreover, 87 (from 1DLC-MS/MS) and 229 (from 2DLC-MS/MS) post-translational modifications of ECM proteins, including glycosylation, phosphorylation, and hydroxylation, were identified and localized. This Azo-enabled ECM proteomics strategy will streamline the analysis of ECM proteins and promote the study of ECM biology.


Assuntos
Compostos Azo/química , Matriz Extracelular/química , Proteínas de Neoplasias/análise , Proteômica , Tensoativos/química , Animais , Antígenos Transformantes de Poliomavirus/química , Matriz Extracelular/metabolismo , Vírus do Tumor Mamário do Camundongo/química , Espectrometria de Massas , Camundongos , Camundongos Transgênicos , Proteínas de Neoplasias/metabolismo , Processos Fotoquímicos , Solubilidade
3.
Proc Natl Acad Sci U S A ; 113(5): 1214-9, 2016 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-26787910

RESUMO

The conformation of DNA bound in nucleosomes depends on the DNA sequence. Questions such as how nucleosomes are positioned and how they potentially bind sequence-dependent nuclear factors require near-atomic resolution structures of the nucleosome core containing different DNA sequences; despite this, only the DNA for two similar α-satellite sequences and a sequence (601) selected in vitro have been visualized bound in the nucleosome core. Here we report the 2.6-Å resolution X-ray structure of a nucleosome core particle containing the DNA sequence of nucleosome A of the 3'-LTR of the mouse mammary tumor virus (147 bp MMTV-A). To our knowledge, this is the first nucleosome core particle structure containing a promoter sequence and crystallized from Mg(2+) ions. It reveals sequence-dependent DNA conformations not seen previously, including kinking into the DNA major groove.


Assuntos
Vírus do Tumor Mamário do Camundongo/química , Vírion/química , Sequência de Bases , Cristalografia por Raios X , DNA Viral/genética , Vírus do Tumor Mamário do Camundongo/genética , Modelos Moleculares , Dados de Sequência Molecular , Sequências Repetidas Terminais
4.
RNA Biol ; 15(8): 1047-1059, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29929424

RESUMO

Packaging the mouse mammary tumor virus (MMTV) genomic RNA (gRNA) requires the entire 5' untranslated region (UTR) in conjunction with the first 120 nucleotides of the gag gene. This region includes several palindromic (pal) sequence(s) and stable stem loops (SLs). Among these, stem loop 4 (SL4) adopts a bifurcated structure consisting of three stems, two apical loops, and an internal loop. Pal II, located in one of the apical loops, mediates gRNA dimerization, a process intricately linked to packaging. We thus hypothesized that the bifurcated SL4 structure could constitute the major gRNA packaging determinant. To test this hypothesis, the two apical loops and the flanking sequences forming the bifurcated SL4 were individually mutated. These mutations all had deleterious effects on gRNA packaging and propagation. Next, single and compensatory mutants were designed to destabilize then recreate the bifurcated SL4 structure. A structure-function analysis using bioinformatics predictions and RNA chemical probing revealed that mutations that led to the loss of the SL4 bifurcated structure abrogated RNA packaging and propagation, while compensatory mutations that recreated the native SL4 structure restored RNA packaging and propagation to wild type levels. Altogether, our results demonstrate that SL4 constitutes the principal packaging determinant of MMTV gRNA. Our findings further suggest that SL4 acts as a structural switch that can not only differentiate between RNA for translation versus packaging/dimerization, but its location also allows differentiation between spliced and unspliced RNAs during gRNA encapsidation.


Assuntos
Dimerização , Vírus do Tumor Mamário do Camundongo/metabolismo , Biossíntese de Proteínas , RNA Viral/química , RNA Viral/metabolismo , Montagem de Vírus , Animais , Genômica , Vírus do Tumor Mamário do Camundongo/química , Vírus do Tumor Mamário do Camundongo/genética , Camundongos , Conformação de Ácido Nucleico , RNA Viral/genética
5.
Retrovirology ; 13: 2, 2016 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-26728401

RESUMO

BACKGROUND: Myristoylation of the matrix (MA) domain mediates the transport and binding of Gag polyproteins to the plasma membrane (PM) and is required for the assembly of most retroviruses. In betaretroviruses, which assemble immature particles in the cytoplasm, myristoylation is dispensable for assembly but is crucial for particle transport to the PM. Oligomerization of HIV-1 MA stimulates the transition of the myristoyl group from a sequestered to an exposed conformation, which is more accessible for membrane binding. However, for other retroviruses, the effect of MA oligomerization on myristoyl group exposure has not been thoroughly investigated. RESULTS: Here, we demonstrate that MA from the betaretrovirus mouse mammary tumor virus (MMTV) forms dimers in solution and that this process is stimulated by its myristoylation. The crystal structure of N-myristoylated MMTV MA, determined at 1.57 Å resolution, revealed that the myristoyl groups are buried in a hydrophobic pocket at the dimer interface and contribute to dimer formation. Interestingly, the myristoyl groups in the dimer are mutually swapped to achieve energetically stable binding, as documented by molecular dynamics modeling. Mutations within the myristoyl binding site resulted in reduced MA dimerization and extracellular particle release. CONCLUSIONS: Based on our experimental, structural, and computational data, we propose a model for dimerization of MMTV MA in which myristoyl groups stimulate the interaction between MA molecules. Moreover, dimer-forming MA molecules adopt a sequestered conformation with their myristoyl groups entirely buried within the interaction interface. Although this differs from the current model proposed for lentiviruses, in which oligomerization of MA triggers exposure of myristoyl group, it appears convenient for intracellular assembly, which involves no apparent membrane interaction and allows the myristoyl group to be sequestered during oligomerization.


Assuntos
Vírus do Tumor Mamário do Camundongo/química , Vírus do Tumor Mamário do Camundongo/fisiologia , Multimerização Proteica , Processamento de Proteína Pós-Traducional , Proteínas da Matriz Viral/química , Proteínas da Matriz Viral/metabolismo , Animais , Linhagem Celular , Cristalografia por Raios X , Humanos , Modelos Biológicos , Modelos Moleculares , Simulação de Dinâmica Molecular , Ratos
6.
J Virol ; 87(4): 1937-46, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23221553

RESUMO

The structure of the transmembrane subunit (TM) of the retroviral envelope glycoprotein (Env) is highly conserved among most retrovirus genera and includes a pair of cysteines that forms an intramolecular disulfide loop within the ectodomain. Alpha-, gamma-, and deltaretroviruses have a third cysteine, adjacent to the loop, which forms a disulfide bond between TM and the surface subunit (SU) of Env, while lentiviruses, which have noncovalently associated subunits, lack this third cysteine. The Betaretrovirus genus includes Jaagsiekte sheep retrovirus (JSRV) and mouse mammary tumor virus (MMTV), as well as many endogenous retroviruses. Envelope subunit association had not been characterized in the betaretroviruses, but lack of a third cysteine in the TM ectodomain suggested noncovalently associated subunits. We tested the Env proteins of JSRV and MMTV, as well as human endogenous retrovirus K (HERV-K)108--a betaretrovirus-like human endogenous retrovirus--for intersubunit bonding and found that, as in the lentiviruses, the Env subunits lack an intersubunit disulfide bond. Since these results suggest that the number of cysteines in the TM loop region readily distinguishes between covalent and noncovalent structure, we surveyed endogenous retroviral TM sequences in the genomes of vertebrates represented in public databases and found that (i) retroviruses with noncovalently associated subunits have been present during all of anthropoid evolution and (ii) the noncovalent env motif is limited to mammals, while the covalent type is found among five vertebrate classes. We discuss implications of these findings for retroviral evolution, cross-species transmissions, and recombination events involving the env gene.


Assuntos
Retrovirus Endógenos/química , Retrovirus Jaagsiekte de Ovinos/química , Vírus do Tumor Mamário do Camundongo/química , Proteínas do Envelope Viral/química , Animais , Biologia Computacional , Cisteína/química , Cisteína/genética , Dissulfetos , Retrovirus Endógenos/genética , Humanos , Retrovirus Jaagsiekte de Ovinos/genética , Vírus do Tumor Mamário do Camundongo/genética , Ligação Proteica , Subunidades Proteicas/química
7.
J Virol ; 86(1): 214-25, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22072771

RESUMO

Mouse mammary tumor virus (MMTV) encodes a Rev-like protein, Rem, which is involved in the nuclear export and expression of viral RNA. Previous data have shown that all Rev-like functions are localized to the 98-amino-acid signal peptide (SP) at the N terminus of MMTV Rem or envelope proteins. MMTV-SP uses endoplasmic reticulum-associated degradation (ERAD) for protein trafficking. Rem cleavage by signal peptidase in the ER is necessary for MMTV-SP function in a reporter assay, but many requirements for trafficking are not known. To allow detection and localization of both MMTV-SP and the C-terminal cleavage product, we prepared plasmids expressing green fluorescent protein (GFP) tags. N-terminal Rem tagging led to protein accumulation relative to untagged Rem and allowed signal peptidase cleavage but reduced its specific activity. C-terminal tagging also led to Rem accumulation yet dramatically reduced cleavage, GFP fluorescence, and activity relative to N-terminally tagged Rem (GFPRem). Substitutions of an invariant leucine at position 71 between the known RNA-binding and nuclear export sequences interfered with GFPRem accumulation and activity but not cleavage. Similarly, deletion of 100 or 150 C-terminal amino acids from GFPRem dramatically reduced both Rem and MMTV-SP levels and function. Removal of the entire C terminus (203 amino acids) restored both protein levels and activity of MMTV-SP. Only C-terminal GFP tagging, and not other modifications, appeared to trap Rem in the ER membrane. Thus, Rem conformation in both the ER lumen and cytoplasm determines cleavage, retrotranslocation, and MMTV-SP function. These mutants further characterize intermediates in Rem trafficking and have implications for all proteins affected by ERAD.


Assuntos
Vírus do Tumor Mamário do Camundongo/metabolismo , Processamento de Proteína Pós-Traducional , Sinais Direcionadores de Proteínas , Infecções por Retroviridae/virologia , Proteínas do Envelope Viral/química , Proteínas do Envelope Viral/metabolismo , Motivos de Aminoácidos , Animais , Retículo Endoplasmático/metabolismo , Retículo Endoplasmático/virologia , Degradação Associada com o Retículo Endoplasmático , Humanos , Vírus do Tumor Mamário do Camundongo/química , Vírus do Tumor Mamário do Camundongo/genética , Camundongos , Infecções por Retroviridae/metabolismo , Proteínas do Envelope Viral/genética
8.
Proc Natl Acad Sci U S A ; 106(41): 17349-54, 2009 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-19805055

RESUMO

Understanding how RNA molecules navigate their rugged folding landscapes holds the key to describing their roles in a variety of cellular functions. To dissect RNA folding at the molecular level, we performed simulations of three pseudoknots (MMTV and SRV-1 from viral genomes and the hTR pseudoknot from human telomerase) using coarse-grained models. The melting temperatures from the specific heat profiles are in good agreement with the available experimental data for MMTV and hTR. The equilibrium free energy profiles, which predict the structural transitions that occur at each melting temperature, are used to propose that the relative stabilities of the isolated helices control their folding mechanisms. Kinetic simulations, which corroborate the inferences drawn from the free energy profiles, show that MMTV folds by a hierarchical mechanism with parallel paths, i.e., formation of one of the helices nucleates the assembly of the rest of the structure. The SRV-1 pseudoknot, which folds in a highly cooperative manner, assembles in a single step in which the preformed helices coalesce nearly simultaneously to form the tertiary structure. Folding occurs by multiple pathways in the hTR pseudoknot, the isolated structural elements of which have similar stabilities. In one of the paths, tertiary interactions are established before the formation of the secondary structures. Our work shows that there are significant sequence-dependent variations in the folding landscapes of RNA molecules with similar fold. We also establish that assembly mechanisms can be predicted using the stabilities of the isolated secondary structures.


Assuntos
Conformação de Ácido Nucleico , RNA Viral/química , RNA/química , Linhagem Celular Tumoral , Simulação por Computador , Genoma Viral , Temperatura Alta , Humanos , Cinética , Vírus do Tumor Mamário do Camundongo/química , Vírus do Tumor Mamário do Camundongo/enzimologia , Vírus do Tumor Mamário do Camundongo/genética , Vírus dos Macacos de Mason-Pfizer/química , Vírus dos Macacos de Mason-Pfizer/enzimologia , Vírus dos Macacos de Mason-Pfizer/genética , Modelos Moleculares , Conformação Molecular , Desnaturação de Ácido Nucleico , RNA Viral/metabolismo , Telomerase/metabolismo , Termodinâmica
9.
J Biol Chem ; 285(37): 28683-90, 2010 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-20628060

RESUMO

DNA repair takes place in the context of chromatin. Previous studies showed that histones impair base excision repair (BER) of modified bases at both the excision and synthesis steps. We examined BER of uracil in a glucocorticoid response element (GRE) complexed with the glucocorticoid receptor DNA binding domain (GR-DBD). Five substrates were designed, each containing a unique C-->U substitution within the mouse mammary tumor virus promoter, one located within each GRE half-site and the others located outside the GRE. To examine distinct steps of BER, DNA cleavage by uracil-DNA glycosylase and Ape1 endonuclease was used to assess initiation, dCTP incorporation by DNA polymerase (pol) beta was used to measure repair synthesis, and DNA ligase I was used to seal the nick. For uracil sites within the GRE, there was a reduced rate of uracil-DNA glycosylase/Ape1 activity following GR-DBD binding. Cleavage in the right half-site, with higher GR-DBD binding affinity, was reduced approximately 5-fold, whereas cleavage in the left half-site was reduced approximately 3.8-fold. Conversely, uracil-directed cleavage outside the GRE was unaffected by GR-DBD binding. Surprisingly, there was no reduction in the rate of pol beta synthesis or DNA ligase activity on any of the fragments bound to GR-DBD. Indeed, we observed a small increase ( approximately 1.5-2.2-fold) in the rate of pol beta synthesis at uracil residues in both the GRE and one site six nucleotides downstream. These results highlight the potential for both positive and negative impacts of DNA-transcription factor binding on the rate of BER.


Assuntos
Reparo do DNA/fisiologia , DNA Viral/química , Vírus do Tumor Mamário do Camundongo/química , Receptores de Glucocorticoides , Elementos de Resposta , Animais , DNA Polimerase beta/química , DNA Polimerase beta/metabolismo , DNA Viral/metabolismo , DNA Liase (Sítios Apurínicos ou Apirimidínicos)/química , DNA Liase (Sítios Apurínicos ou Apirimidínicos)/metabolismo , Humanos , Vírus do Tumor Mamário do Camundongo/genética , Camundongos , Uracila-DNA Glicosidase/química , Uracila-DNA Glicosidase/metabolismo
10.
Virology ; 535: 272-278, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31357166

RESUMO

The late (L) domain sequence used by mouse mammary tumor virus (MMTV) remains undefined. Similar to other L domain-containing proteins, MMTV p8 and p14NC proteins are monoubiquitinated, suggesting L domain function. Site-directed mutagenesis of p8, PLPPV, and p14NC, PLPPL, sequences in MMTV Gag revealed a requirement only for the PLPPV sequence in virion release in a position-dependent manner. Electron microscopy of a defective Gag mutant confirmed an L domain budding defect morphology. The equine infectious anemia virus (EIAV) YPDL core L domain sequence and PLPPV provided L domain function in reciprocal MMTV and EIAV Gag exchange mutants, respectively. Alanine scanning of the PLPPV sequence revealed a strict requirement for the valine residue but only minor requirements for any one of the other residues. Thus, PLPPV provides MMTV L domain function, representing a fourth type of retroviral L domain that enables MMTV Gag proteins to co-opt cellular budding pathways for release.


Assuntos
Motivos de Aminoácidos , Produtos do Gene gag/metabolismo , Vírus do Tumor Mamário do Camundongo/crescimento & desenvolvimento , Liberação de Vírus , Animais , Produtos do Gene gag/química , Produtos do Gene gag/genética , Células HEK293 , Humanos , Vírus do Tumor Mamário do Camundongo/química , Vírus do Tumor Mamário do Camundongo/genética , Camundongos , Microscopia Eletrônica
11.
Biochemistry ; 47(36): 9627-35, 2008 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-18702521

RESUMO

Nucleosomes are a major impediment to regulatory factor activities and therefore to the operation of genomic processes in eukaryotes. One suggested mechanism for overcoming in vivo nucleosomal repression is factor-mediated removal of H2A/H2B from nucleosomes. Using nucleosomes labeled internally with FRET fluorophores, we previously observed significant, DNA sequence-dependent variation in stability and dynamics under conditions (subnanomolar concentrations) reported to produce H2A/H2B release from nucleosomes. Here, the same analytical approaches are repeated using 5S and MMTV-B nucleosomes containing FRET labels that monitor the terminal regions. The results show that stability and dynamics vary significantly within the nucleosome; terminally labeled constructs report significantly reduced stability and enhanced DNA dynamics compared to internally labeled constructs. The data also strongly support previous suggestions (1) that subnanomolar concentrations cause H2A/H2B release from nucleosomes, including the 5S, and (2) that stabilities in the internal regions of 5S and two promoter-derived nucleosomes (MMTV-B, GAL10) differ. Sequence-dependent nucleosome stability/dynamics differences could produce inherent variations in the accessibility of histone-associated DNA in vivo. Such intrinsic variation could also provide a mechanism for producing enhanced effects on specific nucleosomes by processes affecting large chromatin regions, thus facilitating the localized targeting of alterations to nucleosomes on crucial regulatory sequences. The results demonstrate clearly the importance of studying physiologically relevant nucleosomes.


Assuntos
DNA Viral/química , Corantes Fluorescentes/química , Histonas/química , Nucleossomos/química , Regiões Promotoras Genéticas , Sistema Livre de Células/química , Sistema Livre de Células/metabolismo , DNA Viral/metabolismo , Transferência Ressonante de Energia de Fluorescência , Células HeLa , Histonas/metabolismo , Humanos , Vírus do Tumor Mamário do Camundongo/química , Vírus do Tumor Mamário do Camundongo/genética , Vírus do Tumor Mamário do Camundongo/metabolismo , Nucleossomos/genética , Nucleossomos/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Transativadores/química , Transativadores/genética , Transativadores/metabolismo
12.
Comput Biol Chem ; 74: 86-93, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29567490

RESUMO

Zinc fingers are small protein domains in which zinc plays a structural role, contributing to the stability of the zinc-peptide complex. Zinc fingers are structurally diverse and are present in proteins that perform a broad range of functions in various cellular processes, such as replication and repair, transcription and translation, metabolism and signaling, cell proliferation, and apoptosis. Zinc fingers typically function as interaction modules and bind to a wide variety of compounds, such as nucleic acids, proteins, and small molecules. In this study, we investigated the structural properties, in solution, of the proximal and distal zinc knuckles of the nucleocapsid (NC) protein from the mouse mammary tumor virus (MMTV) (MMTV NC). For this purpose, we performed a series of molecular dynamics simulations in aqueous solution at 300 K, 333 K, and 348 K. The temperature effect was evaluated in terms of root mean square deviation of the backbone atoms and root mean square fluctuation of the coordinating residue atoms. The stability of the zinc coordination sphere was analyzed based upon the time profile of the interatomic distances between the zinc ions and the chelator atoms. The results indicate that the hydrophobic character of the proximal zinc finger is dominant at 333 K. The low mobility of the coordinating residues suggests that the strong electrostatic effect exerted by the zinc ion on its coordinating residues is not influenced by the increase in temperature. The evolution of the structural parameters of the coordination sphere of the distal zinc finger at 300 K gives us a reasonable picture of the unfolding pathway, as proposed by Bombarda and coworkers (Bombarda et al., 2005), which can predict the binding order of the four conserved ligand-binding residues. Our results support the conclusion that the structural features can vary significantly between the two zinc knuckles of MMTV NC.


Assuntos
Capsídeo/química , Vírus do Tumor Mamário do Camundongo/química , Temperatura , Animais , Camundongos , Simulação de Dinâmica Molecular , Dedos de Zinco
13.
Mol Biol Cell ; 7(6): 975-83, 1996 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-8817002

RESUMO

Normal human cells in culture become senescent after a limited number of population doublings. Senescent cells display characteristic changes in gene expression, among which is a repression of the ability to induce the c-fos gene. We have proposed a two-stage model for cellular senescence in which the mortality stage 1 (M1) mechanism can be overcome by agents that bind both the product of the retinoblastoma susceptibility gene (pRB)-like pocket proteins and p53. In this study we determined whether the repression of c-fos at M1 was downstream of the p53 or pRB-like "arms" of the M1 mechanism. We examined c-fos expression during the entire lifespan of normal human fibroblasts carrying E6 (which binds p53), E7 (which binds pRB), or both E6 and E7 of human papilloma virus type 16. The results indicate a dramatic change in cellular physiology at M1. Before M1, c-fos inducibility is controlled by an E6-independent mechanism that is blocked by E7. After M1, c-fos inducibility becomes dependent on E6 whereas E7 has no effect. In addition, a novel oscillation of c-fos expression with an approximately 2-h periodicity appears in E6-expressing fibroblasts post-M1. Accompanying this shift at M1 is a dramatic change in the ability to divide in low serum. Before M1, E6-expressing fibroblasts growth arrest in 0.3% serum, although they continue dividing under those conditions post-M1. These results demonstrate the unique physiology of fibroblasts during the extended lifespan between M1 and M2 and suggest that p53 might participate in the process that represses the c-fos gene at the onset of cellular senescence.


Assuntos
Envelhecimento/fisiologia , Fibroblastos/química , Fibroblastos/citologia , Regulação da Expressão Gênica/genética , Genes fos/genética , Proteínas Oncogênicas Virais/genética , Antígenos Virais de Tumores/imunologia , Divisão Celular , Linhagem Celular , Humanos , Vírus do Tumor Mamário do Camundongo/química , Oncogenes/genética , Papillomaviridae/química , Proteínas Repressoras/genética
14.
J Mol Biol ; 247(5): 963-78, 1995 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-7723043

RESUMO

The structure of a 34-nucleotide RNA pseudoknot that causes efficient -1 frameshifting in the messenger RNA of mouse mammary tumor virus has been investigated by NMR. Spectral assignment of the pseudoknot was facilitated by comparative NMR studies on the pseudoknot and on two smaller hairpin RNAs, and by using selective 13C labeling and 13C-edited NMR techniques. The three-dimensional structure of the pseudoknot has been determined. The frameshifter pseudoknot possesses structural features not observed in previously reported model pseudoknots. It has a compact structure with a pronounced bend at the junction of its G.C-rich stems. A single adenylate residue is intercalated between the two stems so that direct coaxial staking of the stems is not possible. The lack of an opposing nucleotide for the stacked, intervening adenylate creates a hinge in the pseudoknot. Most of the loop nucleotides are restrained by base staking interactions which keep the loops from adopting extended conformations. The sterically constrained loops direct the bending of the pseudoknot at the stem-stem junction. The roles of the intercalated adenylate and loop lengths in causing bending can explain their requirement for efficient frameshifting. Our NMR data also indicate that there are internal dynamics associated with the pseudoknot. The unique, compact structure and conformational flexibility of the pseudoknot may be required for recognition and favourable interaction with the translating ribosome, or with translation factors associated with the ribosome.


Assuntos
Vírus do Tumor Mamário do Camundongo/química , Conformação de Ácido Nucleico , RNA Mensageiro/química , RNA Viral/química , Fases de Leitura , Sequência de Bases , Simulação por Computador , Proteínas de Fusão gag-pol/genética , Iminas/química , Espectroscopia de Ressonância Magnética/métodos , Vírus do Tumor Mamário do Camundongo/genética , Modelos Moleculares , Dados de Sequência Molecular , Biossíntese de Proteínas , Prótons , RNA Mensageiro/genética , RNA Viral/genética
15.
Int J Oncol ; 18(5): 1041-4, 2001 May.
Artigo em Inglês | MEDLINE | ID: mdl-11295054

RESUMO

We have previously reported, using the polymerase chain reaction (PCR), the presence of a 660 bp sequence homologous to the env gene of MMTV in 38% of the human breast cancers studied, but not in normal breasts nor in other tumors or tissues. We have now investigated the presence of MMTV-like LTR sequences in human breast cancer and normal breast tissue. Primers were selected to amplify a 630 bp sequence homologous to MMTV, but not to the endogenous retrovirus HERV-K10. This sequence was detected in 41.5% of the breast cancers and none of the normal breasts. A larger 1.2 kb LTR fragment was also amplified with high homology to MMTV. Finally, a 1.6 kb fragment containing env and LTR sequences was amplified, cloned and sequenced from breast cancer DNA. The human LTRs were highly homologous to MMTV contain enhancer and promoter elements, the glucocorticoid responsive element (GRE) and the superantigen (Sag) sequences. Presence of functional sequences implies involvement in transcriptional regulation, whereas presence of an env-LTR sequence indicates contiguity within the genome of a potential provirus. Their presence in breast cancer DNA, but not in normal tissue, suggest an exogenous origin.


Assuntos
Neoplasias da Mama/virologia , Vírus do Tumor Mamário do Camundongo/genética , Proteínas de Ligação a RNA , Infecções por Retroviridae/virologia , Superantígenos/genética , Sequências Repetidas Terminais/genética , Infecções Tumorais por Vírus/virologia , Proteínas do Envelope Viral/genética , Animais , Primers do DNA/química , DNA Viral/análise , Feminino , Sequestradores de Radicais Livres , Genoma Viral , Glucocorticoides/metabolismo , Humanos , Vírus do Tumor Mamário do Camundongo/química , Camundongos , Reação em Cadeia da Polimerase , Regiões Promotoras Genéticas , Superantígenos/metabolismo , Ubiquitina-Proteína Ligases
16.
J Virol Methods ; 38(2): 205-13, 1992 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-1325471

RESUMO

Previous studies concerning the analysis of retroviral tRNA populations involved intracellular metabolic labeling of RNA, followed by the isolation of viral RNA and lengthy sucrose gradient centrifugation for the separation of tRNAs found in various viral compartments. A more rapid, convenient, and safer method for achieving similar aims is described. Isolated total viral RNA is end-labeled in vitro, and tRNA subgroups are fractionated using commercial Nucleobond AX-20 mini columns. 2-D PAGE analysis of mouse mammary tumor virus tRNA fractionated in this way yields gel patterns similar to those obtained with previously described methods.


Assuntos
Vírus do Tumor Mamário do Camundongo/química , RNA de Transferência/isolamento & purificação , Cromatografia , Eletroforese em Gel Bidimensional , RNA Viral/isolamento & purificação
19.
PLoS One ; 4(2): e4537, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19225568

RESUMO

Canonical Wnt/beta-catenin signaling regulates stem/progenitor cells and, when perturbed, induces many human cancers. A significant proportion of human breast cancer is associated with loss of secreted Wnt antagonists and mice expressing MMTV-Wnt1 and MMTV-DeltaN89beta-catenin develop mammary adenocarcinomas. Many studies have assumed these mouse models of breast cancer to be equivalent. Here we show that MMTV-Wnt1 and MMTV-DeltaN89beta-catenin transgenes induce tumors with different phenotypes. Using axin2/conductin reporter genes we show that MMTV-Wnt1 and MMTV-DeltaN89beta-catenin activate canonical Wnt signaling within distinct cell-types. DeltaN89beta-catenin activated signaling within a luminal subpopulation scattered along ducts that exhibited a K18(+)ER(-)PR(-)CD24(high)CD49f(low) profile and progenitor properties. In contrast, MMTV-Wnt1 induced canonical signaling in K14(+) basal cells with CD24/CD49f profiles characteristic of two distinct stem/progenitor cell-types. MMTV-Wnt1 produced additional profound effects on multiple cell-types that correlated with focal activation of the Hedgehog pathway. We document that large melanocytic nevi are a hitherto unreported hallmark of early hyperplastic Wnt1 glands. These nevi formed along the primary mammary ducts and were associated with Hedgehog pathway activity within a subset of melanocytes and surrounding stroma. Hh pathway activity also occurred within tumor-associated stromal and K14(+)/p63(+) subpopulations in a manner correlated with Wnt1 tumor onset. These data show MMTV-Wnt1 and MMTV-DeltaN89beta-catenin induce canonical signaling in distinct progenitors and that Hedgehog pathway activation is linked to melanocytic nevi and mammary tumor onset arising from excess Wnt1 ligand. They further suggest that Hedgehog pathway activation maybe a critical component and useful indicator of breast tumors arising from unopposed Wnt1 ligand.


Assuntos
Proteínas Hedgehog/metabolismo , Neoplasias Mamárias Animais/patologia , Vírus do Tumor Mamário do Camundongo/metabolismo , Células-Tronco Neoplásicas/patologia , Transdução de Sinais , Proteína Wnt1/fisiologia , beta Catenina/fisiologia , Animais , Neoplasias Mamárias Animais/etiologia , Vírus do Tumor Mamário do Camundongo/química , Camundongos
20.
Biochemistry ; 39(7): 1604-12, 2000 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-10677209

RESUMO

The nucleocapsid protein (NC) from the mouse mammary tumor virus (MMTV) has been overexpressed in Escherichia coli and purified to homogeneity for structural studies by nuclear magnetic resonance (NMR) spectroscopy. The protein contains two copies of a conserved zinc-coordinating "CCHC array" or "zinc knuckle" motif common to the nucleocapsid proteins of nearly all known retroviruses. The residues comprising and adjacent to the zinc knuckles were assigned by standard two-dimensional (1)H and three-dimensional (1)H-(15)N NMR methods; the rotational dynamic properties of the protein were determined from (15)N relaxation experiments, and distance restraints derived from the nuclear Overhauser effect (NOE) data were used to calculate the three-dimensional structure. The (1)H-(1)H NOE and (15)N relaxation data indicate that the two zinc knuckles do not interact with each other, but instead behave as independently folded domains connected by a flexible 13-residue linker segment. The proximal zinc knuckle folds in a manner that is essentially identical to that observed previously for the two zinc knuckles of the human immunodeficiency virus type 1 nucleocapsid protein and for the moloney murine leukemia virus nucleocapsid zinc knuckle domain. However, the distal zinc knuckle of MMTV NC exhibits a rare three-dimensional fold that includes an additional C-terminal beta-hairpin. A similar C-terminal reverse turn-like structure was observed recently in the distal zinc knuckle of the Mason-Pfizer monkey virus nucleocapsid protein [Gao, Y., et al. (1998) Protein Sci. 7, 2265-2280]. However, despite a high degree of sequence homology, the conformation and orientation of the beta-hairpin in MMTV NC is significantly different from that of the reverse turn in MPMV NC. The results support the conclusion that structural features of NC zinc knuckle domains can vary significantly among the different genera of retroviridae, and are discussed in terms of the recent and surprising discovery that MMTV NC can facilitate packaging of the HIV-1 genome in chimeric MMTV mutants.


Assuntos
Vírus do Tumor Mamário do Camundongo/química , Proteínas do Nucleocapsídeo/química , Fragmentos de Peptídeos/química , Dobramento de Proteína , Dedos de Zinco , Sequência de Aminoácidos , Animais , Cristalografia por Raios X , Humanos , Camundongos , Dados de Sequência Molecular , Isótopos de Nitrogênio , Ressonância Magnética Nuclear Biomolecular , Conformação Proteica , Análise Espectral , Termodinâmica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA