Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 5.568
Filtrar
1.
Annu Rev Immunol ; 38: 597-620, 2020 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-32340575

RESUMO

Neuroimmunology, albeit a relatively established discipline, has recently sparked numerous exciting findings on microglia, the resident macrophages of the central nervous system (CNS). This review addresses meningeal immunity, a less-studied aspect of neuroimmune interactions. The meninges, a triple layer of membranes-the pia mater, arachnoid mater, and dura mater-surround the CNS, encompassing the cerebrospinal fluid produced by the choroid plexus epithelium. Unlike the adjacent brain parenchyma, the meninges contain a wide repertoire of immune cells. These constitute meningeal immunity, which is primarily concerned with immune surveillance of the CNS, and-according to recent evidence-also participates in postinjury CNS recovery, chronic neurodegenerative conditions, and even higher brain function. Meningeal immunity has recently come under the spotlight owing to the characterization of meningeal lymphatic vessels draining the CNS. Here, we review the current state of our understanding of meningeal immunity and its effects on healthy and diseased brains.


Assuntos
Sistema Nervoso Central/imunologia , Sistema Nervoso Central/metabolismo , Suscetibilidade a Doenças , Homeostase , Imunidade , Meninges/fisiologia , Animais , Humanos , Vasos Linfáticos/imunologia , Vasos Linfáticos/metabolismo , Neuroimunomodulação , Subpopulações de Linfócitos T/imunologia , Subpopulações de Linfócitos T/metabolismo
2.
Annu Rev Immunol ; 35: 31-52, 2017 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-27860528

RESUMO

The lymphatic vasculature is not considered a formal part of the immune system, but it is critical to immunity. One of its major roles is in the coordination of the trafficking of antigen and immune cells. However, other roles in immunity are emerging. Lymphatic endothelial cells, for example, directly present antigen or express factors that greatly influence the local environment. We cover these topics herein and discuss how other properties of the lymphatic vasculature, such as mechanisms of lymphatic contraction (which immunologists traditionally do not take into account), are nonetheless integral in the immune system. Much is yet unknown, and this nascent subject is ripe for exploration. We argue that to consider the impact of lymphatic biology in any given immunological interaction is a key step toward integrating immunology with organ physiology and ultimately many complex pathologies.


Assuntos
Células Endoteliais/imunologia , Sistema Imunitário , Imunidade , Sistema Linfático/imunologia , Vasos Linfáticos/fisiologia , Animais , Apresentação de Antígeno , Humanos , Metabolismo dos Lipídeos
3.
Cell ; 186(2): 382-397.e24, 2023 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-36669473

RESUMO

Blood and lymphatic vessels form a versatile transport network and provide inductive signals to regulate tissue-specific functions. Blood vessels in bone regulate osteogenesis and hematopoiesis, but current dogma suggests that bone lacks lymphatic vessels. Here, by combining high-resolution light-sheet imaging and cell-specific mouse genetics, we demonstrate presence of lymphatic vessels in mouse and human bones. We find that lymphatic vessels in bone expand during genotoxic stress. VEGF-C/VEGFR-3 signaling and genotoxic stress-induced IL6 drive lymphangiogenesis in bones. During lymphangiogenesis, secretion of CXCL12 from proliferating lymphatic endothelial cells is critical for hematopoietic and bone regeneration. Moreover, lymphangiocrine CXCL12 triggers expansion of mature Myh11+ CXCR4+ pericytes, which differentiate into bone cells and contribute to bone and hematopoietic regeneration. In aged animals, such expansion of lymphatic vessels and Myh11-positive cells in response to genotoxic stress is impaired. These data suggest lymphangiogenesis as a therapeutic avenue to stimulate hematopoietic and bone regeneration.


Assuntos
Regeneração Óssea , Vasos Linfáticos , Idoso , Animais , Humanos , Camundongos , Células Endoteliais , Linfangiogênese
4.
Nat Immunol ; 24(4): 664-675, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36849745

RESUMO

Antigen-specific CD8+ T cell accumulation in tumors is a prerequisite for effective immunotherapy, and yet the mechanisms of lymphocyte transit are not well defined. Here we show that tumor-associated lymphatic vessels control T cell exit from tumors via the chemokine CXCL12, and intratumoral antigen encounter tunes CXCR4 expression by effector CD8+ T cells. Only high-affinity antigen downregulates CXCR4 and upregulates the CXCL12 decoy receptor, ACKR3, thereby reducing CXCL12 sensitivity and promoting T cell retention. A diverse repertoire of functional tumor-specific CD8+ T cells, therefore, exit the tumor, which limits the pool of CD8+ T cells available to exert tumor control. CXCR4 inhibition or loss of lymphatic-specific CXCL12 boosts T cell retention and enhances tumor control. These data indicate that strategies to limit T cell egress might be an approach to boost the quantity and quality of intratumoral T cells and thereby response to immunotherapy.


Assuntos
Vasos Linfáticos , Neoplasias , Humanos , Linfócitos T CD8-Positivos , Receptores CXCR4/metabolismo , Neoplasias/terapia , Neoplasias/patologia , Vasos Linfáticos/metabolismo , Imunoterapia
5.
Cell ; 182(2): 270-296, 2020 07 23.
Artigo em Inglês | MEDLINE | ID: mdl-32707093

RESUMO

Mammals have two specialized vascular circulatory systems: the blood vasculature and the lymphatic vasculature. The lymphatic vasculature is a unidirectional conduit that returns filtered interstitial arterial fluid and tissue metabolites to the blood circulation. It also plays major roles in immune cell trafficking and lipid absorption. As we discuss in this review, the molecular characterization of lymphatic vascular development and our understanding of this vasculature's role in pathophysiological conditions has greatly improved in recent years, changing conventional views about the roles of the lymphatic vasculature in health and disease. Morphological or functional defects in the lymphatic vasculature have now been uncovered in several pathological conditions. We propose that subtle asymptomatic alterations in lymphatic vascular function could underlie the variability seen in the body's response to a wide range of human diseases.


Assuntos
Vasos Linfáticos/metabolismo , Doenças Cardiovasculares/metabolismo , Doenças Cardiovasculares/patologia , História do Século XXI , Humanos , Linfonodos/imunologia , Linfonodos/metabolismo , Linfangiogênese , Doenças Linfáticas/genética , Doenças Linfáticas/história , Doenças Linfáticas/patologia , Metástase Linfática , Vasos Linfáticos/anatomia & histologia , Vasos Linfáticos/citologia , Neoplasias/metabolismo , Neoplasias/patologia , Receptor 3 de Fatores de Crescimento do Endotélio Vascular/genética
6.
Nat Immunol ; 23(4): 581-593, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35347285

RESUMO

Meningeal lymphatics near the cribriform plate undergo lymphangiogenesis during neuroinflammation to drain excess fluid. Here, we hypothesized that lymphangiogenic vessels may acquire an altered phenotype to regulate immunity. Using single-cell RNA sequencing of meningeal lymphatics near the cribriform plate from healthy and experimental autoimmune encephalomyelitis in the C57BL/6 model, we report that neuroinflammation induces the upregulation of genes involved in antigen presentation such as major histocompatibility complex class II, adhesion molecules including vascular cell adhesion protein 1 and immunoregulatory molecules such as programmed cell death 1 ligand 1, where many of these changes are mediated by interferon-γ. The inflamed lymphatics retain CD11c+ cells and CD4 T cells where they capture and present antigen, creating an immunoregulatory niche that represents an underappreciated interface in the regulation of neuroinflammation. We also found discontinuity of the arachnoid membrane near the cribriform plate, which provides unrestricted access to the cerebrospinal fluid. These findings highlight a previously unknown function of local meningeal lymphatics in regulating immunity that has only previously been characterized in draining lymph nodes.


Assuntos
Osso Etmoide , Vasos Linfáticos , Animais , Osso Etmoide/fisiologia , Linfangiogênese/fisiologia , Sistema Linfático , Doenças Neuroinflamatórias
7.
Nat Immunol ; 22(11): 1375-1381, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34663979

RESUMO

Migration of leukocytes from the skin to lymph nodes (LNs) via afferent lymphatic vessels (LVs) is pivotal for adaptive immune responses1,2. Circadian rhythms have emerged as important regulators of leukocyte trafficking to LNs via the blood3,4. Here, we demonstrate that dendritic cells (DCs) have a circadian migration pattern into LVs, which peaks during the rest phase in mice. This migration pattern is determined by rhythmic gradients in the expression of the chemokine CCL21 and of adhesion molecules in both mice and humans. Chronopharmacological targeting of the involved factors abrogates circadian migration of DCs. We identify cell-intrinsic circadian oscillations in skin lymphatic endothelial cells (LECs) and DCs that cogovern these rhythms, as their genetic disruption in either cell type ablates circadian trafficking. These observations indicate that circadian clocks control the infiltration of DCs into skin lymphatics, a process that is essential for many adaptive immune responses and relevant for vaccination and immunotherapies.


Assuntos
Imunidade Adaptativa , Quimiotaxia , Relógios Circadianos , Células Dendríticas/imunologia , Linfonodos/imunologia , Vasos Linfáticos/imunologia , Pele/imunologia , Idoso , Animais , Moléculas de Adesão Celular/genética , Moléculas de Adesão Celular/metabolismo , Células Cultivadas , Quimiocina CCL21/genética , Quimiocina CCL21/metabolismo , Peptídeos e Proteínas de Sinalização do Ritmo Circadiano/genética , Peptídeos e Proteínas de Sinalização do Ritmo Circadiano/metabolismo , Células Dendríticas/metabolismo , Feminino , Humanos , Linfonodos/metabolismo , Vasos Linfáticos/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Pele/metabolismo , Fatores de Tempo
8.
Annu Rev Neurosci ; 47(1): 323-344, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38648267

RESUMO

Since its recent discovery, the meningeal lymphatic system has reshaped our understanding of central nervous system (CNS) fluid exchange, waste clearance, immune cell trafficking, and immune privilege. Meningeal lymphatics have also been demonstrated to functionally modify the outcome of neurological disorders and their responses to treatment, including brain tumors, inflammatory diseases such as multiple sclerosis, CNS injuries, and neurodegenerative disorders such as Alzheimer's and Parkinson's diseases. In this review, we discuss recent evidence of the contribution of meningeal lymphatics to neurological diseases, as well as the available experimental methods for manipulating meningeal lymphatics in these conditions. Finally, we also provide a discussion of the pressing questions and challenges in utilizing meningeal lymphatics as a prime target for CNS therapeutic intervention and possibly drug delivery for brain disorders.


Assuntos
Doenças do Sistema Nervoso Central , Meninges , Humanos , Animais , Doenças do Sistema Nervoso Central/fisiopatologia , Doenças do Sistema Nervoso Central/patologia , Sistema Linfático/fisiologia , Sistema Linfático/fisiopatologia , Vasos Linfáticos/fisiologia
9.
Physiol Rev ; 103(1): 391-432, 2023 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-35953269

RESUMO

The heart is imbued with a vast lymphatic network that is responsible for fluid homeostasis and immune cell trafficking. Disturbances in the forces that regulate microvascular fluid movement can result in myocardial edema, which has profibrotic and proinflammatory consequences and contributes to cardiovascular dysfunction. This review explores the complex relationship between cardiac lymphatics, myocardial edema, and cardiac disease. It covers the revised paradigm of microvascular forces and fluid movement around the capillary as well as the arsenal of preclinical tools and animal models used to model myocardial edema and cardiac disease. Clinical studies of myocardial edema and their prognostic significance are examined in parallel to the recent elegant animal studies discerning the pathophysiological role and therapeutic potential of cardiac lymphatics in different cardiovascular disease models. This review highlights the outstanding questions of interest to both basic scientists and clinicians regarding the roles of cardiac lymphatics in health and disease.


Assuntos
Edema Cardíaco , Cardiopatias , Vasos Linfáticos , Animais , Modelos Animais de Doenças , Edema Cardíaco/fisiopatologia , Cardiopatias/fisiopatologia , Vasos Linfáticos/fisiopatologia
10.
Immunity ; 54(12): 2795-2811.e9, 2021 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-34788601

RESUMO

Lymphangitis and the formation of tertiary lymphoid organs (TLOs) in the mesentery are features of Crohn's disease. Here, we examined the genesis of these TLOs and their impact on disease progression. Whole-mount and intravital imaging of the ileum and ileum-draining collecting lymphatic vessels (CLVs) draining to mesenteric lymph nodes from TNFΔARE mice, a model of ileitis, revealed TLO formation at valves of CLVs. TLOs obstructed cellular and molecular outflow from the gut and were sites of lymph leakage and backflow. Tumor necrosis factor (TNF) neutralization begun at early stages of TLO formation restored lymph transport. However, robustly developed, chronic TLOs resisted regression and restoration of flow after TNF neutralization. TNF stimulation of cultured lymphatic endothelial cells reprogrammed responses to oscillatory shear stress, preventing the induction of valve-associated genes. Disrupted transport of immune cells, driven by loss of valve integrity and TLO formation, may contribute to the pathology of Crohn's disease.


Assuntos
Doença de Crohn/imunologia , Células Endoteliais/imunologia , Íleo/imunologia , Linfa/metabolismo , Vasos Linfáticos/imunologia , Mesentério/imunologia , Estruturas Linfoides Terciárias/imunologia , Fator de Necrose Tumoral alfa/metabolismo , Animais , Movimento Celular , Células Cultivadas , Modelos Animais de Doenças , Humanos , Ileíte , Linfangite , Camundongos , Camundongos Knockout , Estresse Mecânico
11.
Nature ; 625(7996): 768-777, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38200313

RESUMO

Cerebrospinal fluid (CSF) in the subarachnoid space around the brain has long been known to drain through the lymphatics to cervical lymph nodes1-17, but the connections and regulation have been challenging to identify. Here, using fluorescent CSF tracers in Prox1-GFP lymphatic reporter mice18, we found that the nasopharyngeal lymphatic plexus is a major hub for CSF outflow to deep cervical lymph nodes. This plexus had unusual valves and short lymphangions but no smooth-muscle coverage, whereas downstream deep cervical lymphatics had typical semilunar valves, long lymphangions and smooth muscle coverage that transported CSF to the deep cervical lymph nodes. α-Adrenergic and nitric oxide signalling in the smooth muscle cells regulated CSF drainage through the transport properties of deep cervical lymphatics. During ageing, the nasopharyngeal lymphatic plexus atrophied, but deep cervical lymphatics were not similarly altered, and CSF outflow could still be increased by adrenergic or nitric oxide signalling. Single-cell analysis of gene expression in lymphatic endothelial cells of the nasopharyngeal plexus of aged mice revealed increased type I interferon signalling and other inflammatory cytokines. The importance of evidence for the nasopharyngeal lymphatic plexus functioning as a CSF outflow hub is highlighted by its regression during ageing. Yet, the ageing-resistant pharmacological activation of deep cervical lymphatic transport towards lymph nodes can still increase CSF outflow, offering an approach for augmenting CSF clearance in age-related neurological conditions in which greater efflux would be beneficial.


Assuntos
Líquido Cefalorraquidiano , Vértebras Cervicais , Drenagem , Vasos Linfáticos , Animais , Camundongos , Envelhecimento/metabolismo , Líquido Cefalorraquidiano/metabolismo , Vértebras Cervicais/metabolismo , Células Endoteliais/metabolismo , Fluorescência , Genes Reporter , Interferon Tipo I/imunologia , Interferon Tipo I/metabolismo , Vasos Linfáticos/fisiologia , Miócitos de Músculo Liso/metabolismo , Óxido Nítrico/metabolismo , Nariz/fisiologia , Faringe/metabolismo , Receptores Adrenérgicos alfa/metabolismo , Análise de Célula Única , Transdução de Sinais
12.
Nature ; 628(8006): 204-211, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38418880

RESUMO

The eye, an anatomical extension of the central nervous system (CNS), exhibits many molecular and cellular parallels to the brain. Emerging research demonstrates that changes in the brain are often reflected in the eye, particularly in the retina1. Still, the possibility of an immunological nexus between the posterior eye and the rest of the CNS tissues remains unexplored. Here, studying immune responses to herpes simplex virus in the brain, we observed that intravitreal immunization protects mice against intracranial viral challenge. This protection extended to bacteria and even tumours, allowing therapeutic immune responses against glioblastoma through intravitreal immunization. We further show that the anterior and posterior compartments of the eye have distinct lymphatic drainage systems, with the latter draining to the deep cervical lymph nodes through lymphatic vasculature in the optic nerve sheath. This posterior lymphatic drainage, like that of meningeal lymphatics, could be modulated by the lymphatic stimulator VEGFC. Conversely, we show that inhibition of lymphatic signalling on the optic nerve could overcome a major limitation in gene therapy by diminishing the immune response to adeno-associated virus and ensuring continued efficacy after multiple doses. These results reveal a shared lymphatic circuit able to mount a unified immune response between the posterior eye and the brain, highlighting an understudied immunological feature of the eye and opening up the potential for new therapeutic strategies in ocular and CNS diseases.


Assuntos
Encéfalo , Olho , Sistema Linfático , Animais , Feminino , Humanos , Masculino , Camundongos , Coelhos , Bactérias/imunologia , Encéfalo/anatomia & histologia , Encéfalo/imunologia , Dependovirus/imunologia , Olho/anatomia & histologia , Olho/imunologia , Glioblastoma/imunologia , Herpesvirus Humano 2/imunologia , Injeções Intravítreas , Sistema Linfático/anatomia & histologia , Sistema Linfático/imunologia , Vasos Linfáticos/anatomia & histologia , Vasos Linfáticos/imunologia , Macaca mulatta , Meninges/imunologia , Nervo Óptico/imunologia , Suínos , Peixe-Zebra , Fator C de Crescimento do Endotélio Vascular/imunologia , Fator C de Crescimento do Endotélio Vascular/metabolismo , Fator C de Crescimento do Endotélio Vascular/farmacologia
13.
Nature ; 628(8008): 612-619, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38509366

RESUMO

There is increasing interest in how immune cells in the meninges-the membranes that surround the brain and spinal cord-contribute to homeostasis and disease in the central nervous system1,2. The outer layer of the meninges, the dura mater, has recently been described to contain both innate and adaptive immune cells, and functions as a site for B cell development3-6. Here we identify organized lymphoid structures that protect fenestrated vasculature in the dura mater. The most elaborate of these dural-associated lymphoid tissues (DALT) surrounded the rostral-rhinal confluence of the sinuses and included lymphatic vessels. We termed this structure, which interfaces with the skull bone marrow and a comparable venous plexus at the skull base, the rostral-rhinal venolymphatic hub. Immune aggregates were present in DALT during homeostasis and expanded with age or after challenge with systemic or nasal antigens. DALT contain germinal centre B cells and support the generation of somatically mutated, antibody-producing cells in response to a nasal pathogen challenge. Inhibition of lymphocyte entry into the rostral-rhinal hub at the time of nasal viral challenge abrogated the generation of germinal centre B cells and class-switched plasma cells, as did perturbation of B-T cell interactions. These data demonstrate a lymphoid structure around vasculature in the dura mater that can sample antigens and rapidly support humoral immune responses after local pathogen challenge.


Assuntos
Dura-Máter , Imunidade Humoral , Tecido Linfoide , Veias , Administração Intranasal , Antígenos/administração & dosagem , Antígenos/imunologia , Medula Óssea/imunologia , Sistema Nervoso Central/irrigação sanguínea , Sistema Nervoso Central/imunologia , Dura-Máter/irrigação sanguínea , Dura-Máter/imunologia , Centro Germinativo/citologia , Centro Germinativo/imunologia , Vasos Linfáticos/imunologia , Tecido Linfoide/irrigação sanguínea , Tecido Linfoide/imunologia , Plasmócitos/imunologia , Crânio/irrigação sanguínea , Linfócitos T/imunologia , Veias/fisiologia , Humanos , Masculino , Feminino , Adulto , Pessoa de Meia-Idade , Animais , Camundongos , Idoso de 80 Anos ou mais
14.
Physiol Rev ; 102(4): 1837-1879, 2022 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-35771983

RESUMO

The lymphatic system, composed of initial and collecting lymphatic vessels as well as lymph nodes that are present in almost every tissue of the human body, acts as an essential transport system for fluids, biomolecules, and cells between peripheral tissues and the central circulation. Consequently, it is required for normal body physiology but is also involved in the pathogenesis of various diseases, most notably cancer. The important role of tumor-associated lymphatic vessels and lymphangiogenesis in the formation of lymph node metastasis has been elucidated during the last two decades, whereas the underlying mechanisms and the relation between lymphatic and peripheral organ dissemination of cancer cells are incompletely understood. Lymphatic vessels are also important for tumor-host communication, relaying molecular information from a primary or metastatic tumor to regional lymph nodes and the circulatory system. Beyond antigen transport, lymphatic endothelial cells, particularly those residing in lymph node sinuses, have recently been recognized as direct regulators of tumor immunity and immunotherapy responsiveness, presenting tumor antigens and expressing several immune-modulatory signals including PD-L1. In this review, we summarize recent discoveries in this rapidly evolving field and highlight strategies and challenges of therapeutic targeting of lymphatic vessels or specific lymphatic functions in cancer patients.


Assuntos
Células Endoteliais , Vasos Linfáticos , Humanos , Imunoterapia , Linfangiogênese , Metástase Linfática/patologia
16.
Nat Immunol ; 18(7): 762-770, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28504698

RESUMO

Trafficking of tissue dendritic cells (DCs) via lymph is critical for the generation of cellular immune responses in draining lymph nodes (LNs). In the current study we found that DCs docked to the basolateral surface of lymphatic vessels and transited to the lumen through hyaluronan-mediated interactions with the lymph-specific endothelial receptor LYVE-1, in dynamic transmigratory-cup-like structures. Furthermore, we show that targeted deletion of the gene Lyve1, antibody blockade or depletion of the DC hyaluronan coat not only delayed lymphatic trafficking of dermal DCs but also blunted their capacity to prime CD8+ T cell responses in skin-draining LNs. Our findings uncovered a previously unknown function for LYVE-1 and show that transit through the lymphatic network is initiated by the recognition of leukocyte-derived hyaluronan.


Assuntos
Células Dendríticas/imunologia , Células Endoteliais/metabolismo , Glicoproteínas/genética , Ácido Hialurônico/metabolismo , Vasos Linfáticos/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Animais , Movimento Celular/imunologia , Células Dendríticas/metabolismo , Endotélio Linfático/citologia , Endotélio Linfático/metabolismo , Citometria de Fluxo , Glicoproteínas/metabolismo , Humanos , Imunidade Celular/imunologia , Linfonodos/imunologia , Proteínas de Membrana Transportadoras , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Linfócitos T/imunologia
17.
Nat Rev Mol Cell Biol ; 18(8): 477-494, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28537573

RESUMO

Blood and lymphatic vessels pervade almost all body tissues and have numerous essential roles in physiology and disease. The inner lining of these networks is formed by a single layer of endothelial cells, which is specialized according to the needs of the tissue that it supplies. Whereas the general mechanisms of blood and lymphatic vessel development are being defined with increasing molecular precision, studies of the processes of endothelial specialization remain mostly descriptive. Recent insights from genetic animal models illuminate how endothelial cells interact with each other and with their tissue environment, providing paradigms for vessel type- and organ-specific endothelial differentiation. Delineating these governing principles will be crucial for understanding how tissues develop and maintain, and how their function becomes abnormal in disease.


Assuntos
Células Endoteliais/citologia , Animais , Vasos Sanguíneos/citologia , Diferenciação Celular/fisiologia , Células Endoteliais/metabolismo , Células Endoteliais/fisiologia , Humanos , Vasos Linfáticos/citologia
18.
Nature ; 614(7947): 343-348, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36697821

RESUMO

Transcriptional enhancer elements are responsible for orchestrating the temporal and spatial control over gene expression that is crucial for programming cell identity during development1-3. Here we describe a novel enhancer element that is important for regulating the expression of Prox1 in lymphatic endothelial cells. This evolutionarily conserved enhancer is bound by key lymphatic transcriptional regulators including GATA2, FOXC2, NFATC1 and PROX1. Genome editing of the enhancer to remove five nucleotides encompassing the GATA2-binding site resulted in perinatal death of homozygous mutant mice due to profound lymphatic vascular defects. Lymphatic endothelial cells in enhancer mutant mice exhibited reduced expression of genes characteristic of lymphatic endothelial cell identity and increased expression of genes characteristic of haemogenic endothelium, and acquired the capacity to generate haematopoietic cells. These data not only reveal a transcriptional enhancer element important for regulating Prox1 expression and lymphatic endothelial cell identity but also demonstrate that the lymphatic endothelium has haemogenic capacity, ordinarily repressed by Prox1.


Assuntos
Células Endoteliais , Elementos Facilitadores Genéticos , Hematopoese , Vasos Linfáticos , Animais , Camundongos , Células Endoteliais/metabolismo , Elementos Facilitadores Genéticos/genética , Hematopoese/genética , Proteínas de Homeodomínio/metabolismo , Vasos Linfáticos/citologia , Vasos Linfáticos/metabolismo , Fatores de Transcrição/metabolismo
19.
Nature ; 623(7989): 992-1000, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37968397

RESUMO

Cerebral oedema is associated with morbidity and mortality after traumatic brain injury (TBI)1. Noradrenaline levels are increased after TBI2-4, and the amplitude of the increase in noradrenaline predicts both the extent of injury5 and the likelihood of mortality6. Glymphatic impairment is both a feature of and a contributor to brain injury7,8, but its relationship with the injury-associated surge in noradrenaline is unclear. Here we report that acute post-traumatic oedema results from a suppression of glymphatic and lymphatic fluid flow that occurs in response to excessive systemic release of noradrenaline. This post-TBI adrenergic storm was associated with reduced contractility of cervical lymphatic vessels, consistent with diminished return of glymphatic and lymphatic fluid to the systemic circulation. Accordingly, pan-adrenergic receptor inhibition normalized central venous pressure and partly restored glymphatic and cervical lymphatic flow in a mouse model of TBI, and these actions led to substantially reduced brain oedema and improved functional outcomes. Furthermore, post-traumatic inhibition of adrenergic signalling boosted lymphatic export of cellular debris from the traumatic lesion, substantially reducing secondary inflammation and accumulation of phosphorylated tau. These observations suggest that targeting the noradrenergic control of central glymphatic flow may offer a therapeutic approach for treating acute TBI.


Assuntos
Edema Encefálico , Lesões Encefálicas Traumáticas , Sistema Glinfático , Norepinefrina , Animais , Camundongos , Antagonistas Adrenérgicos/farmacologia , Antagonistas Adrenérgicos/uso terapêutico , Edema Encefálico/complicações , Edema Encefálico/tratamento farmacológico , Edema Encefálico/metabolismo , Edema Encefálico/prevenção & controle , Lesões Encefálicas Traumáticas/complicações , Lesões Encefálicas Traumáticas/tratamento farmacológico , Lesões Encefálicas Traumáticas/metabolismo , Modelos Animais de Doenças , Sistema Glinfático/efeitos dos fármacos , Sistema Glinfático/metabolismo , Inflamação/complicações , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Inflamação/prevenção & controle , Vasos Linfáticos/metabolismo , Norepinefrina/metabolismo , Fosforilação , Receptores Adrenérgicos/metabolismo
20.
Physiol Rev ; 101(4): 1809-1871, 2021 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-33507128

RESUMO

Primary lymphedema is a long-term (chronic) condition characterized by tissue lymph retention and swelling that can affect any part of the body, although it usually develops in the arms or legs. Due to the relevant contribution of the lymphatic system to human physiology, while this review mainly focuses on the clinical and physiological aspects related to the regulation of fluid homeostasis and edema, clinicians need to know that the impact of lymphatic dysfunction with a genetic origin can be wide ranging. Lymphatic dysfunction can affect immune function so leading to infection; it can influence cancer development and spread, and it can determine fat transport so impacting on nutrition and obesity. Genetic studies and the development of imaging techniques for the assessment of lymphatic function have enabled the recognition of primary lymphedema as a heterogenic condition in terms of genetic causes and disease mechanisms. In this review, the known biological functions of several genes crucial to the development and function of the lymphatic system are used as a basis for understanding normal lymphatic biology. The disease conditions originating from mutations in these genes are discussed together with a detailed clinical description of the phenotype and the up-to-date knowledge in terms of disease mechanisms acquired from in vitro and in vivo research models.


Assuntos
Sistema Linfático/crescimento & desenvolvimento , Sistema Linfático/fisiologia , Linfedema/genética , Animais , Humanos , Linfangiogênese/genética , Linfangiogênese/fisiologia , Vasos Linfáticos/fisiopatologia , Linfedema/fisiopatologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA