Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 194
Filtrar
1.
BMC Plant Biol ; 24(1): 379, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38720284

RESUMO

BACKGROUND: Rice bean (Vigna umbellata), an underrated legume, adapts to diverse climatic conditions with the potential to support food and nutritional security worldwide. It is used as a vegetable, minor food crop and a fodder crop, being a rich source of proteins, minerals, and essential fatty acids. However, little effort has been made to decipher the genetic and molecular basis of various useful traits in this crop. Therefore, we considered three economically important traits i.e., flowering, maturity and seed weight of rice bean and identified the associated candidate genes employing an associative transcriptomics approach on 100 diverse genotypes out of 1800 evaluated rice bean accessions from the Indian National Genebank. RESULTS: The transcriptomics-based genotyping of one-hundred diverse rice bean cultivars followed by pre-processing of genotypic data resulted in 49,271 filtered markers. The STRUCTURE, PCA and Neighbor-Joining clustering of 100 genotypes revealed three putative sub-populations. The marker-trait association analysis involving various genome-wide association study (GWAS) models revealed significant association of 82 markers on 48 transcripts for flowering, 26 markers on 22 transcripts for maturity and 22 markers on 21 transcripts for seed weight. The transcript annotation provided information on the putative candidate genes for the considered traits. The candidate genes identified for flowering include HSC80, P-II PsbX, phospholipid-transporting-ATPase-9, pectin-acetylesterase-8 and E3-ubiquitin-protein-ligase-RHG1A. Further, the WRKY1 and DEAD-box-RH27 were found to be associated with seed weight. Furthermore, the associations of PIF3 and pentatricopeptide-repeat-containing-gene with maturity and seed weight, and aldo-keto-reductase with flowering and maturity were revealed. CONCLUSION: This study offers insights into the genetic basis of key agronomic traits in rice bean, including flowering, maturity, and seed weight. The identified markers and associated candidate genes provide valuable resources for future exploration and targeted breeding, aiming to enhance the agronomic performance of rice bean cultivars. Notably, this research represents the first transcriptome-wide association study in pulse crop, uncovering the candidate genes for agronomically useful traits.


Assuntos
Flores , Estudo de Associação Genômica Ampla , Sementes , Transcriptoma , Sementes/genética , Sementes/crescimento & desenvolvimento , Flores/genética , Flores/crescimento & desenvolvimento , Vigna/genética , Vigna/crescimento & desenvolvimento , Genes de Plantas , Genótipo , Perfilação da Expressão Gênica , Mapeamento Cromossômico , Locos de Características Quantitativas/genética , Fenótipo
2.
BMC Plant Biol ; 24(1): 460, 2024 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-38797833

RESUMO

Trehalose serves as a crucial osmolyte and plays a significant role in stress tolerance. The influence of exogenously added trehalose (1 and 5 mM) in alleviating the chromium (Cr; 0.5 mM) stress-induced decline in growth, photosynthesis, mineral uptake, antioxidant system and nitrate reductase activity in Vigna radiata was studied. Chromium (Cr) significantly declined shoot height (39.33%), shoot fresh weight (35.54%), shoot dry weight (36.79%), total chlorophylls (50.70%), carotenoids (29.96%), photosynthesis (33.97%), net intercellular CO2 (26.86%), transpiration rate (36.77%), the content of N (35.04%), P (35.77%), K (31.33%), S (23.91%), Mg (32.74%), and Ca (29.67%). However, the application of trehalose considerably alleviated the decline. Application of trehalose at both concentrations significantly reduced hydrogen peroxide accumulation, lipid peroxidation and electrolyte leakage, which were increased due to Cr stress. Application of trehalose significantly mitigated the Cr-induced oxidative damage by up-regulating the activity of reactive oxygen species (ROS) scavenging enzymes, including superoxide dismutase (182.03%), catalase (125.40%), ascorbate peroxidase (72.86%), and glutathione reductase (68.39%). Besides this, applied trehalose proved effective in enhancing ascorbate (24.29%) and reducing glutathione content (34.40%). In addition, also alleviated the decline in ascorbate by Cr stress to significant levels. The activity of nitrate reductase enhanced significantly (28.52%) due to trehalose activity and declined due to Cr stress (34.15%). Exogenous application of trehalose significantly improved the content of osmolytes, including proline, glycine betaine, sugars and total phenols under normal and Cr stress conditions. Furthermore, Trehalose significantly increased the content of key mineral elements and alleviated the decline induced by Cr to considerable levels.


Assuntos
Cromo , Estresse Oxidativo , Fotossíntese , Espécies Reativas de Oxigênio , Trealose , Vigna , Trealose/metabolismo , Trealose/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Fotossíntese/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Vigna/efeitos dos fármacos , Vigna/crescimento & desenvolvimento , Vigna/metabolismo , Minerais/metabolismo , Peroxidação de Lipídeos/efeitos dos fármacos , Clorofila/metabolismo , Antioxidantes/metabolismo
3.
Theor Appl Genet ; 137(7): 146, 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38834825

RESUMO

KEY MESSAGE: The major QTL Sdp1.1+ controlling seed dormancy in cowpea was finely mapped, and two CCoAOMT1 genes were identified as candidate genes for the dormancy. Seed dormancy in wild cowpea may be useful in breeding cultivated cowpea with pre-harvest sprouting resistance. A previous study identified a major quantitative trait locus (QTL) for seed dormancy, Sdp1.1+ , using the population of the cross between cultivated cowpea 'JP81610' and wild cowpea 'JP89083.' However, the molecular basis of seed dormancy in cowpea is not yet known. In this study, we aimed to finely map the locus Sdp1.1+ and identify candidate gene(s) for it. Germination tests demonstrated that the seed coat is the major factor controlling seed dormancy in the wild cowpea JP89083. Microscopic observations revealed that wild cowpea seeds, unlike cultivated cowpea seeds, possessed a palisade cuticle layer. Fine mapping using a large F2 population of the cross JP81610 × JP89083 grown in Thailand revealed a single QTL, Sdp1.1+ , controlling seed dormancy. The Sdp1.1+ was confirmed using a small F2 population of the same cross grown in Japan. The Sdp1.1+ was mapped to a 37.34-Kb region containing three genes. Two closely linked genes, Vigun03g278900 (VuCCoAOMT1a) and Vigun03g290000 (VuCCoAOMT1b), located 4.844 Kb apart were considered as candidate genes for seed dormancy. The two genes encoded caffeoyl coenzyme A O-methyltransferase 1 (CCoAOMT1). DNA sequencing and alignment of VuCCoAOMT1a and VuCCoAOMT1b between JP89083 and JP81610 revealed a single nucleotide polymorphism (SNP) causing an amino acid change in VuCCoAOMT1a and several SNPs leading to six amino acid changes in VuCCoAOMT1b. Altogether, these results indicate that VuCCoAOMT1a and VuCCoAOMT1b are candidate genes controlling physical seed dormancy in the wild cowpea JP89083.


Assuntos
Mapeamento Cromossômico , Germinação , Metiltransferases , Dormência de Plantas , Locos de Características Quantitativas , Sementes , Vigna , Dormência de Plantas/genética , Vigna/genética , Vigna/crescimento & desenvolvimento , Vigna/fisiologia , Sementes/genética , Sementes/crescimento & desenvolvimento , Metiltransferases/genética , Metiltransferases/metabolismo , Germinação/genética , Genes de Plantas , Fenótipo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
4.
Int J Mol Sci ; 25(8)2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38674099

RESUMO

In agriculture, soil-borne fungal pathogens, especially Fusarium oxysporum strains, are posing a serious threat to efforts to achieve global food security. In the search for safer agrochemicals, silica nanoparticles (SiO2NPs) have recently been proposed as a new tool to alleviate pathogen damage including Fusarium wilt. Hollow mesoporous silica nanoparticles (HMSNs), a unique class of SiO2NPs, have been widely accepted as desirable carriers for pesticides. However, their roles in enhancing disease resistance in plants and the specific mechanism remain unknown. In this study, three sizes of HMSNs (19, 96, and 406 nm as HMSNs-19, HMSNs-96, and HMSNs-406, respectively) were synthesized and characterized to determine their effects on seed germination, seedling growth, and Fusarium oxysporum f. sp. phaseoli (FOP) suppression. The three HMSNs exhibited no side effects on cowpea seed germination and seedling growth at concentrations ranging from 100 to 1500 mg/L. The inhibitory effects of the three HMSNs on FOP mycelial growth were very weak, showing inhibition ratios of less than 20% even at 2000 mg/L. Foliar application of HMSNs, however, was demonstrated to reduce the FOP severity in cowpea roots in a size- and concentration-dependent manner. The three HMSNs at a low concentration of 100 mg/L, as well as HMSNs-19 at a high concentration of 1000 mg/L, were observed to have little effect on alleviating the disease incidence. HMSNs-406 were most effective at a concentration of 1000 mg/L, showing an up to 40.00% decline in the disease severity with significant growth-promoting effects on cowpea plants. Moreover, foliar application of HMSNs-406 (1000 mg/L) increased the salicylic acid (SA) content in cowpea roots by 4.3-fold, as well as the expression levels of SA marker genes of PR-1 (by 1.97-fold) and PR-5 (by 9.38-fold), and its receptor gene of NPR-1 (by 1.62-fold), as compared with the FOP infected control plants. Meanwhile, another resistance-related gene of PAL was also upregulated by 8.54-fold. Three defense-responsive enzymes of POD, PAL, and PPO were also involved in the HMSNs-enhanced disease resistance in cowpea roots, with varying degrees of reduction in activity. These results provide substantial evidence that HMSNs exert their Fusarium wilt suppression in cowpea plants by activating SA-dependent SAR (systemic acquired resistance) responses rather than directly suppressing FOP growth. Overall, for the first time, our results indicate a new role of HMSNs as a potent resistance inducer to serve as a low-cost, highly efficient, safe and sustainable alternative for plant disease protection.


Assuntos
Resistência à Doença , Fusarium , Germinação , Nanopartículas , Doenças das Plantas , Plântula , Dióxido de Silício , Fusarium/efeitos dos fármacos , Dióxido de Silício/química , Doenças das Plantas/microbiologia , Doenças das Plantas/prevenção & controle , Nanopartículas/química , Germinação/efeitos dos fármacos , Resistência à Doença/efeitos dos fármacos , Plântula/crescimento & desenvolvimento , Plântula/efeitos dos fármacos , Plântula/microbiologia , Vigna/microbiologia , Vigna/crescimento & desenvolvimento , Vigna/efeitos dos fármacos , Porosidade
5.
Plant J ; 106(3): 817-830, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33595147

RESUMO

Cowpea (Vigna unguiculata (L.) Walp.) is one of the most important legume crops planted worldwide, but despite decades of effort, cowpea transformation is still challenging due to inefficient Agrobacterium-mediated transfer DNA delivery, transgenic selection and in vitro shoot regeneration. Here, we report a highly efficient transformation system using embryonic axis explants isolated from imbibed mature seeds. We found that removal of the shoot apical meristem from the explants stimulated direct multiple shoot organogenesis from the cotyledonary node tissue. The application of a previously reported ternary transformation vector system provided efficient Agrobacterium-mediated gene delivery, while the utilization of spcN as selectable marker enabled more robust transgenic selection, plant recovery and transgenic plant generation without escapes and chimera formation. Transgenic cowpea plantlets developed exclusively from the cotyledonary nodes at frequencies of 4% to 37% across a wide range of cowpea genotypes. CRISPR/Cas-mediated gene editing was successfully demonstrated. The transformation principles established here could also be applied to other legumes to increase transformation efficiencies.


Assuntos
Edição de Genes/métodos , Sementes/genética , Vigna/genética , Agrobacterium/genética , Cotilédone/genética , Cotilédone/crescimento & desenvolvimento , Cotilédone/metabolismo , Técnicas de Transferência de Genes , Genoma de Planta/genética , Brotos de Planta/crescimento & desenvolvimento , Plantas Geneticamente Modificadas , Sementes/crescimento & desenvolvimento , Sementes/metabolismo , Transformação Genética , Vigna/crescimento & desenvolvimento , Vigna/metabolismo
6.
Theor Appl Genet ; 134(9): 2749-2766, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34117909

RESUMO

KEY MESSAGE: Polygenic genome-wide association mapping identified two regions of the cowpea genome associated with different components of resistance to its major post-harvest pest, the seed beetle Callosobruchus maculatus. Cowpea (Vigna unguiculata) is an important grain and fodder crop in arid and semi-arid regions of Africa, Asia, and South America, where the cowpea seed beetle, Callosobruchus maculatus, is a serious post-harvest pest. Development of cultivars resistant to C. maculatus population growth in storage could increase grain yield and quality and reduce reliance on insecticides. Here, we use a MAGIC (multi-parent, advanced-generation intercross) population of cowpea consisting of 305 recombinant inbred lines (RILs) to identify genetic variants associated with resistance to seed beetles. Because inferences regarding the genetic basis of resistance may depend on the source of the pest or the assay protocol, we used two divergent geographic populations of C. maculatus and two complementary assays to measure several aspects of resistance. Using polygenic genome-wide association mapping models, we found that the cowpea RILs harbor substantial additive-genetic variation for most resistance measures. Variation in several components of resistance, including larval development time and survival, was largely explained by one or several linked loci on chromosome 5. A second region on chromosome 8 explained increased seed resistance via the induction of early-exiting larvae. Neither of these regions contained genes previously associated with resistance to insects that infest grain legumes. We found some evidence of gene-gene interactions affecting resistance, but epistasis did not contribute substantially to resistance variation in this mapping population. The combination of mostly high heritabilities and a relatively consistent and simple genetic architecture increases the feasibility of breeding for enhanced resistance to C. maculatus.


Assuntos
Cromossomos de Plantas/genética , Besouros/fisiologia , Resistência à Doença/imunologia , Variação Genética , Doenças das Plantas/imunologia , Proteínas de Plantas/metabolismo , Vigna/genética , Animais , Mapeamento Cromossômico/métodos , Resistência à Doença/genética , Regulação da Expressão Gênica de Plantas , Estudo de Associação Genômica Ampla , Doenças das Plantas/genética , Doenças das Plantas/parasitologia , Proteínas de Plantas/genética , Vigna/crescimento & desenvolvimento , Vigna/parasitologia
7.
Theor Appl Genet ; 134(2): 701-714, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33188437

RESUMO

KEY MESSAGE: This paper reports fine mapping of qCLS for resistance to Cercospora leaf spot disease in mungbean and identified LOC106765332encoding TATA-binding-protein-associated factor 5 (TAF5) as the candidate gene for the resistance Cercospora leaf spot (CLS) caused by the fungus Cercospora canescens is an important disease of mungbean. A QTL mapping using mungbean F2 and BC1F1 populations developed from the "V4718" (resistant) and "Kamphaeng Saen 1" (KPS1; susceptible) has identified a major QTL controlling CLS resistance (qCLS). In this study, we finely mapped the qCLS and identified candidate genes at this locus. A BC8F2 [KPS1 × (KPS1 × V4718)] population developed in this study and the F2 (KPS1 × V4718) population used in a previous study were genotyped with 16 newly developed SSR markers. QTL analysis in the BC8F2 and F2 populations consistently showed that the qCLS was mapped to a genomic region of ~ 13 Kb on chromosome 6, which contains only one annotated gene, LOC106765332 (designated "VrTAF5"), encoding TATA-binding-protein-associated factor 5 (TAF5), a subunit of transcription initiation factor IID and Spt-Ada-Gcn5 acetyltransferase complexes. Sequence comparison of VrTAF5 between KPS1 and V4718 revealed many single nucleotide polymorphisms (SNPs) and inserts/deletions (InDels) in which eight SNPs presented in eight different exons, and an SNP (G4,932C) residing in exon 8 causes amino acid change (S250T) in V4718. An InDel marker was developed to detect a 24-bp InDel polymorphism in VrTAF5 between KPS1 and V4718. Analysis by RT-qPCR showed that expression levels of VrTAF5 in KPS1 and V4718 were not statistically different. These results indicated that mutation in VrTAF5 causing an amino acid change in the VrTAF5 protein is responsible for CLS resistance in V4718.


Assuntos
Cercospora/fisiologia , Mapeamento Cromossômico/métodos , Resistência à Doença/genética , Proteínas de Plantas/metabolismo , Locos de Características Quantitativas , Fator de Transcrição TFIID/metabolismo , Vigna/genética , Cromossomos de Plantas/genética , Resistência à Doença/imunologia , Regulação da Expressão Gênica de Plantas , Fenótipo , Doenças das Plantas/genética , Doenças das Plantas/imunologia , Doenças das Plantas/microbiologia , Folhas de Planta/genética , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/microbiologia , Proteínas de Plantas/genética , Polimorfismo Genético , Fator de Transcrição TFIID/genética , Vigna/crescimento & desenvolvimento , Vigna/microbiologia
8.
Arch Microbiol ; 203(4): 1399-1410, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33388787

RESUMO

Abandoned magnesite mine heap causing pollution to nearby farmland and water reservoir. Thus the intention of this research was to screening metal mobilizing and absorbing bacteria from the rhizosphere section of V. unguiculata from farmland nearby to magnesite mine. Further, studied their stimulus effect on growth, biomass, and phytoextraction prospective of V unguiculata in mine tailing. The results of the physicochemical properties of mine tailing shows that four metals (Pb, Mn, Cd, and Zn) were crossing the permissible limit. Out of 27 isolates, 2 isolates (MMS15 and MMS17) were identified with maximum metal tolerance for up to 700 mg L-1 (MIC) and metal mobilization (Pb 5.5 and 5.87, Mn 6.6 and 4.88, Cd 1.99 and 2.59, and Zn 6.55 and 6.94 mg kg-1) and biosorption efficiency as Pb 3.74 and 3.74, Mn 4.9 and 4.7, Cd 2.41 and 3.96, and Zn 4.3 and 4.9 mg g-1. These two strains were identified as members of B. cereus and Kosakonia sp. using 16S rRNA technique and labelled strains NDRMN001 and MGR1, respectively. The Kosakonia sp. MGR1 effectively fixes the nitrogen in the rate of 81.94% and B. cereus NDRMN001 solubilizes 69.98 ± 2.31 mg L-1 of soluble phosphate. The experimental group's study results show that the group C (Kosakonia sp. MGR1 and B. cereus NDRMN001) has effectively stimulate the growth, biomass, and phytoextraction potential of V. unguiculata. The results conclude that the optimistic interaction between these two bacteria could be more significant to minimize the metal pollution in magnesite mine tailing.


Assuntos
Bactérias/metabolismo , Magnésio/metabolismo , Metais Pesados/metabolismo , Poluentes do Solo/metabolismo , Vigna/microbiologia , Bactérias/classificação , Bactérias/genética , Bactérias/isolamento & purificação , Biodegradação Ambiental , Fazendas , Mineração , RNA Ribossômico 16S/genética , Rizosfera , Vigna/crescimento & desenvolvimento , Vigna/metabolismo
9.
Exp Parasitol ; 220: 108045, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33220261

RESUMO

Root-knot disease, caused by Meloidogyne spp., alters histology as well as physiology of the roots thus influencing metabolism of vegetative and reproductive parts leading to huge losses in crop productivity. The experimental plant, Vigna unguiculata L. (cowpea of Fabaceae family) var. Gomti is an economically important pulse crop plant. An experiment was conducted to evaluate the effects of different concentrations (0, 25, 50 or 100 ppm) and various modes of applications (root dip, soil drench or foliar spray) of MgO nanoparticles on cowpea infected with M. incognita. The MgO nanoparticles were synthesized chemically and characterized by transmission and scanning electron microscopy (TEM, SEM), UV-Vis spectroscopy, X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR). The scanning electron microscopy images of second stage juveniles of M. incognita treated with MgO nanoparticles (50 and 100 ppm) exhibited indentations, roughness and distortions in the cuticular surface, in comparison to the control untreated juveniles. MgO nanoparticles, in varying concentrations (50, 100 and 200 ppm), were dispensed into the plants by root dip, soil drench and foliar spray methods and their efficacy was assessed in terms of morphological characteristics, yield parameters and biochemical attributes of M. incognita infected plants. In planta trials revealed that 100 ppm dose of MgO nanoparticles, as root dip application, demonstrated reduced nematode fecundity, decreased number and smaller size of galls; enhanced plant growth, increased chlorophyll, carotenoid, seed protein, and root and shoot nitrogen contents. From these findings it could be inferred that MgO nanoparticles played twin roles, first as a nematicidal agent and the other as growth promotion inducer.


Assuntos
Óxido de Magnésio/administração & dosagem , Nanopartículas/administração & dosagem , Doenças das Plantas/parasitologia , Tylenchoidea/efeitos dos fármacos , Vigna/parasitologia , Aerossóis , Animais , Óxido de Magnésio/farmacologia , Microscopia Eletrônica de Varredura , Nanopartículas/uso terapêutico , Nanopartículas/ultraestrutura , Espectroscopia Fotoeletrônica , Doenças das Plantas/prevenção & controle , Folhas de Planta/efeitos dos fármacos , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/parasitologia , Raízes de Plantas/fisiologia , Solo/parasitologia , Espectroscopia de Infravermelho com Transformada de Fourier , Tylenchoidea/ultraestrutura , Vigna/crescimento & desenvolvimento , Vigna/fisiologia , Difração de Raios X
10.
Food Microbiol ; 96: 103708, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33494890

RESUMO

Microbial contamination of fresh produce is a major public health concern, with the number of associated disease outbreaks increasing in recent years. The consumption of sprouted beans and seeds is of particular concern, as these foodstuffs are generally consumed raw, and are produced in conditions favourable for the growth of zoonotic pathogens, if present in seeds prior to sprouting or in irrigation water. This work aimed to evaluate the activity of plasma activated water (PAW) as a disinfecting agent for alfalfa (Medicago sativa) and mung bean (Vigna radiata) seeds, during seed soaking. Each seed type was inoculated with Escherichia coli O157, E. coli O104, Listeria monocytogenes or Salmonella Montevideo, and treated with PAW for different times. A combination of PAW and ultrasound treatment was also evaluated. The germination and growth rate of both seeds were assessed after PAW treatments. PAW was demonstrated to have disinfecting ability on sprouted seeds, with reductions of up to Log10 1.67 cfu/g in alfalfa seeds inoculated with E. coli O104, and a reduction of Log10 1.76 cfu/g for mung bean seeds inoculated with E. coli O157 observed. The germination and growth rate of alfalfa and mung bean sprouts were not affected by the PAW treatments. The combination of a PAW treatment and ultrasound resulted in increased antimicrobial activity, with a reduction of Log10 3.48 cfu/g of S. Montevideo in mung bean seeds observed. These results demonstrate the potential for PAW to be used for the inactivation of pathogenic microorganisms which may be present on sprouted seeds and beans, thereby providing greater assurance of produce safety.


Assuntos
Desinfetantes/farmacologia , Desinfecção/métodos , Escherichia coli O157/efeitos dos fármacos , Listeria monocytogenes/efeitos dos fármacos , Medicago sativa/microbiologia , Salmonella/efeitos dos fármacos , Vigna/microbiologia , Água/química , Desinfetantes/química , Desinfecção/instrumentação , Escherichia coli O157/crescimento & desenvolvimento , Contaminação de Alimentos/análise , Contaminação de Alimentos/prevenção & controle , Germinação , Listeria monocytogenes/crescimento & desenvolvimento , Medicago sativa/crescimento & desenvolvimento , Salmonella/crescimento & desenvolvimento , Sementes/crescimento & desenvolvimento , Sementes/microbiologia , Vigna/crescimento & desenvolvimento , Água/farmacologia
11.
J Insect Sci ; 21(1)2021 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-33585925

RESUMO

One of the most important global problems is protecting food from insect pests. The negative effects of synthetic insecticides on human health led to a resurgence of interest in botanical insecticides due to their minimal ecological side effects. Therefore, the insecticidal potential of hexane, acetone, and methanol extracts of Gnidia kraussiana Meisn roots at 1 and 5g/kg, and neem seed oil (NSO), used as standard insecticide, were evaluated. Ovicidal and larvicidal toxicity was tested by treating freshly laid eggs and larvae at different immature stages of Callosobruchus maculatus (F.). Cowpea (Vigna unguiculata) (L.) Walp seed damage and weight loss were assessed after a storage period of 4 mo. Repellency effects were detected in choice test using a linear olfactometer. All the fractions were toxic to C. maculatus; however, their bioactivities were inversely correlated with products polarity. Extracts proved to be more toxic than the commercial NSO. The acetone extract was more effective against immature stages of C. maculatus than the methanol extract; eggs, first-, and second-instar larvae being the more susceptible. No cowpea seed damage and weight loss were recorded from the seeds treated with hexane and acetone extracts at the dosage of 5 g/kg, after 4 mo of storage. Extracts evoked stronger repellency effects compared with the tested standard insecticide. According to the above, hexane and acetone extracts are good candidates for incorporation in integrated pest management programs for the control of C. maculatus in stored cowpea seeds.


Assuntos
Besouros , Controle de Insetos , Malvales/química , Compostos Fitoquímicos , Extratos Vegetais , Vigna , Animais , Feminino , Larva , Masculino , Óvulo , Extratos Vegetais/química , Pupa , Sementes/crescimento & desenvolvimento , Vigna/crescimento & desenvolvimento
12.
Int J Mol Sci ; 22(4)2021 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-33673022

RESUMO

Grain legumes are important crops, but they are salt sensitive. This research dissected the responses of four (sub)tropical grain legumes to ionic components (Na+ and/or Cl-) of salt stress. Soybean, mungbean, cowpea, and common bean were subjected to NaCl, Na+ salts (without Cl-), Cl- salts (without Na+), and a "high cation" negative control for 57 days. Growth, leaf gas exchange, and tissue ion concentrations were assessed at different growing stages. For soybean, NaCl and Na+ salts impaired seed dry mass (30% of control), more so than Cl- salts (60% of control). All treatments impaired mungbean growth, with NaCl and Cl- salt treatments affecting seed dry mass the most (2% of control). For cowpea, NaCl had the greatest adverse impact on seed dry mass (20% of control), while Na+ salts and Cl- salts had similar intermediate effects (~45% of control). For common bean, NaCl had the greatest adverse effect on seed dry mass (4% of control), while Na+ salts and Cl- salts impaired seed dry mass to a lesser extent (~45% of control). NaCl and Na+ salts (without Cl-) affected the photosynthesis (Pn) of soybean more than Cl- salts (without Na+) (50% of control), while the reverse was true for mungbean. Na+ salts (without Cl-), Cl- salts (without Na+), and NaCl had similar adverse effects on Pn of cowpea and common bean (~70% of control). In conclusion, salt sensitivity is predominantly determined by Na+ toxicity in soybean, Cl- toxicity in mungbean, and both Na+ and Cl- toxicity in cowpea and common bean.


Assuntos
Cloretos/toxicidade , Glycine max/efeitos dos fármacos , Phaseolus/efeitos dos fármacos , Cloreto de Sódio/toxicidade , Sódio/toxicidade , Vigna/efeitos dos fármacos , Biomassa , Phaseolus/crescimento & desenvolvimento , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/metabolismo , Tolerância ao Sal/efeitos dos fármacos , Glycine max/crescimento & desenvolvimento , Especificidade da Espécie , Vigna/classificação , Vigna/crescimento & desenvolvimento
13.
J Sci Food Agric ; 101(13): 5498-5507, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-33682088

RESUMO

BACKGROUND: Thiophanate-methyl and its metabolite carbendazim are broad-spectrum fungicides used on many crops. The residues of these chemicals could result in potential environmental and human health problems. Therefore, investigations of the dissipation and residue behaviors of thiophanate-methyl and its metabolite carbendazim on cowpeas and associated dietary risk assessments are essential for the safety of agricultural products. RESULTS: A simple analytical approach using liquid chromatography with tandem mass spectrometry was developed and validated for the determination of thiophanate-methyl and carbendazim concentrations in cowpeas. Good linearity (R2 > 0.998) was obtained, and the recoveries and relative standard deviations were 80.0-104.7% and 1.4-5.2%, respectively. The dissipation rates of thiophanate-methyl, carbendazim and total carbendazim were high (half-lives of 1.61-2.46 days) and varied in the field cowpea samples because of the different weather conditions and planting patterns. Based on the definition of thiophanate-methyl, the terminal residues of total carbendazim in cowpea samples were below the maximum residue limits set by Japan for other legumes. The acute and chronic risk quotients of three analytes were 0.0-27.6% in cowpea samples gathered from all terminal residue treatments, which were below 100%. CONCLUSION: An optimized approach for detecting thiophanate-methyl and carbendazim in cowpeas was applied for the investigation of field-trial samples. The potential acute and chronic dietary risks of thiophanate-methyl, carbendazim and total carbendazim to the health of Chinese consumers were low. These results could guide the safe and proper use of thiophanate-methyl in cowpeas and offer data for the dietary risk assessment of thiophanate-methyl in cowpeas. © 2021 Society of Chemical Industry.


Assuntos
Benzimidazóis/análise , Carbamatos/análise , Contaminação de Alimentos/análise , Fungicidas Industriais/química , Resíduos de Praguicidas/química , Tiofanato/química , Vigna/química , Benzimidazóis/metabolismo , Carbamatos/metabolismo , China , Fungicidas Industriais/metabolismo , Cinética , Resíduos de Praguicidas/metabolismo , Sementes/química , Sementes/crescimento & desenvolvimento , Sementes/metabolismo , Tiofanato/metabolismo , Vigna/crescimento & desenvolvimento , Vigna/metabolismo
14.
J Sci Food Agric ; 101(15): 6463-6471, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33997980

RESUMO

BACKGROUND: Germination of mung beans increases the content of dietary fiber, vitamin C, antioxidants, and γ-aminobutyric acid (GABA). Atmospheric cold plasma is a recently developed technology that can rapidly modify the surface properties of an object. In this work, atmospheric cold plasma was utilized to promote higher moisture absorption of mung bean seeds and, thus, enhance the germination ratio and GABA level. The selected healthy seeds that were exposed to plasma generated at different ionizing powers. RESULT: According to the experimental results, atmospheric cold plasma treatments on mung bean seeds could induce significantly more water absorption and lead to a higher rate of germination. The physical appearance of the sprout developed after plasma treatment was noticeably modified to a more desirable form, which has a short radicle and longer hypocotyls with a larger diameter. The content of the bioactive component GABA in plasma-treated beans was approximately three times higher than the untreated group due to the response of seed to the environmental stress created by the plasma treatment. CONCLUSION: The result from this work will serve as a good reference for future investigation that is searching for a solution to enhance bioactive compound production in natural products. © 2021 Society of Chemical Industry.


Assuntos
Gases em Plasma/farmacologia , Sementes/química , Sementes/crescimento & desenvolvimento , Vigna/efeitos dos fármacos , Ácido gama-Aminobutírico/análise , Ácido Ascórbico/análise , Germinação/efeitos dos fármacos , Sementes/efeitos dos fármacos , Vigna/química , Vigna/crescimento & desenvolvimento
15.
BMC Plant Biol ; 20(Suppl 1): 202, 2020 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-33050872

RESUMO

BACKGROUND: Phenology data collected recently for about 300 accessions of Vigna radiata (mungbean) is an invaluable resource for investigation of impacts of climatic factors on plant development. RESULTS: We developed a new mathematical model that describes the dynamic control of time to flowering by daily values of maximal and minimal temperature, precipitation, day length and solar radiation. We obtained model parameters by adaptation to the available experimental data. The models were validated by cross-validation and used to demonstrate that the phenology of adaptive traits, like flowering time, is strongly predicted not only by local environmental factors but also by plant geographic origin and genotype. CONCLUSIONS: Of local environmental factors maximal temperature appeared to be the most critical factor determining how faithfully the model describes the data. The models were applied to forecast time to flowering of accessions grown in Taiwan in future years 2020-2030.


Assuntos
Clima , Flores/crescimento & desenvolvimento , Modelos Biológicos , Vigna/crescimento & desenvolvimento , Adaptação Fisiológica , Genótipo , Fatores de Tempo , Vigna/genética
16.
Arch Biochem Biophys ; 681: 108253, 2020 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-31917117

RESUMO

Effects of black gram (vigna mungo L.cv. Barimash 3) seed treatments with 400 torr dielectric barrier discharge (DBD) air plasma on seed surface morphology, seed germination, seedling growth and antioxidant enzyme activities in the roots, shoots and leaves were investigated. The plasma discharge voltage, frequency, electrode spacing, gas temperature and power were 5kV, 4.5kHz, 60mm, 310K and 45W, respectively. The seeds were treated for the duration ranging from 20 to 180 s. Seed germination rate, seedling growth, total chlorophyll content, total soluble protein and sugar concentrations in the seedlings grown from the treated seeds were found to increase 13.67%, 37.13%, 37.26%,53.60% and 51.71%, respectively, with respect to control. This study reveals that the DBD air plasma was involved in the enhancement of nitrogen complex in the seed coat of black gram which upregulated the protein through nitrogen conversion that was ultimately responsible for the increased seed germination and seedling growth of black gram.


Assuntos
Germinação , Gases em Plasma/metabolismo , Sementes/crescimento & desenvolvimento , Vigna/crescimento & desenvolvimento , Desenho de Equipamento , Germinação/efeitos dos fármacos , Peróxido de Hidrogênio/metabolismo , Óxido Nítrico/metabolismo , Plântula/efeitos dos fármacos , Plântula/crescimento & desenvolvimento , Sementes/efeitos dos fármacos , Vigna/efeitos dos fármacos
17.
Theor Appl Genet ; 133(8): 2355-2362, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32447408

RESUMO

KEY MESSAGE: Synchronous pod maturity is critical for increasing grain yield. The candidate genes involved in synchronous pod maturity were identified through RNA-seq and HPLC. Mungbean (Vigna radiata [L.] Wilczek), an important source of carbohydrate and protein in Asia, is characterized by nonsynchronous pod maturity; consequently, harvesting is labor intensive. Because pod maturity is associated with synthesis and remobilization of sucrose, we examined changes in sucrose levels and transcriptome in leaf (source) tissues after pod (sink) removal using two genotypes, VC1973A and V2984; VC1973A had higher synchronicity in pod maturity than V2984. After pod removal, much higher number of pods were produced in V2984 than VC1973A. The sucrose content of leaf tissues significantly decreased in V2984 because it continued to utilize assimilates from leaves for producing new pods, but significantly increased in VC1973A because of the loss of sink. Transcriptome analysis revealed that the number of differentially expressed genes was approximately fourfold higher in VC1973A than in those of V2984 after pod removal. The expression of two paralogous genes (Vradi01g05010 and Vradi10g08240), encoding beta-glucosidase enzymes, significantly decreased in VC1973A after pod removal and was significantly lower in depodded VC1973A than depodded V2984, indicating these two genes may participate in sucrose utilization for seed development by regulating the level of glucose. The results of this study will help elucidate the genetic basis of synchronous pod maturity in mungbean and facilitate the development of new cultivars with synchronous pod maturity.


Assuntos
Folhas de Planta/genética , Sementes/genética , Sacarose/metabolismo , Transcriptoma/genética , Vigna/genética , Cromatografia Líquida de Alta Pressão , Regulação da Expressão Gênica de Plantas/genética , Ontologia Genética , Genótipo , Folhas de Planta/metabolismo , RNA-Seq , Reação em Cadeia da Polimerase em Tempo Real , Sementes/crescimento & desenvolvimento , Sementes/metabolismo , Transdução de Sinais/genética , Amido/genética , Amido/metabolismo , Vigna/crescimento & desenvolvimento , Vigna/metabolismo
18.
Bioprocess Biosyst Eng ; 43(8): 1457-1468, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32249356

RESUMO

Malachite green (MG), a triphenylmethane dye is extensively used for coloring silk, aquaculture and textile industries, it has also has been reported toxic to life forms. This study aimed to investigate the biodegradation potential of MG by actinobacteria. The potent actinobacterial strain S20 used in this study was isolated from forest soil (Sabarimala, Kerala, India) and identified as Streptomyces chrestomyceticus based on phenotype and molecular features. Strain S20 degraded MG up to 59.65 ± 0.68% was studied in MSM medium and MG (300 mg l-1) and degradation was increased (90-99%) by additions of 1% glucose and yeast extract into the medium at pH 7. The treated metabolites from MG by S20 characterized by FT-IR and GC-MS. The results showed MG has been degraded into nontoxic compounds evaluated by (1) phytotoxic assay on Vigna radiata, (2) microbial toxicity on Staphylococcus aureus, Bacillus subtilis, Micrococcus luteus, Streptococcus sp. and Escherichia coli, (3) cytotoxicity assay in a human cell line (MCF 7). The toxicity studies demonstrated that the byproducts from MG degradation by S. chrestomyceticus S20 were no toxic to plants and microbes and less toxic to human cells as compared to the parent MG. Perhaps this is the first work reported on biodegradation of MG by S. chrestomyceticus which could be a potential candidate for the removal of MG from various environments.


Assuntos
Corantes de Rosanilina , Streptomyces/metabolismo , Humanos , Células MCF-7 , Corantes de Rosanilina/metabolismo , Corantes de Rosanilina/toxicidade , Vigna/crescimento & desenvolvimento
19.
ScientificWorldJournal ; 2020: 9390287, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32802007

RESUMO

Information on combining ability and reciprocal effects (REC) facilitates efficient utilization of genetic materials in a breeding program. This study was conducted (at the CSIR-Savanna Agricultural Research Institute, Ghana) to determine general combining ability (GCA) and specific combining ability (SCA), heritability, genetic advance, GCA, and SCA effects as well as the relationship between parents per se performance and progenies for yield components and maturity traits in cowpea. The test populations were derived using a 5 × 5 complete diallel cross of parents with different yield attributes and maturity durations. The results indicated that GCA was predominant for number of days to 90% pod maturity, plant height at maturity, and hundred-seed weight. This showed that genes with additive effects conditioned these traits. Padi-Tuya, Songotra, and IT86D-610 were identified as good general combiners for grain yield, while Sanzi-Nya was identified as a general combiner for developing extra-early duration cowpea varieties. Crosses Songotra × Sanzi-Nya, SARC-1-57-2 × IT86D-610, Songotra × SARC-1-57-2, and Padi-Tuya × Songotra were identified as good specific combiners for days to 50% flowering, pod length, pods per plant, pod yield, grain yield, and seeds per pod. The findings from this study provide useful information on the inheritance of early maturity and yield traits in cowpea. This can be exploited to develop high yielding and early maturing cowpea varieties as climate smart strategy to mitigate climate change via breeding methods such as pedigree selection and marker assisted backcrossing (MABC). Pedigree selection method is being used to develop varieties from the hybrid with high and significant SCA for grain yield, whereas the development of extra-early duration varieties via MABC with Sanzi-Nya (general combiner for earliness traits) as a donor parent is ongoing.


Assuntos
Vigna/crescimento & desenvolvimento , Vigna/genética , Alelos , Produtos Agrícolas/genética , Produtos Agrícolas/crescimento & desenvolvimento , Produtos Agrícolas/fisiologia , Variação Genética , Genótipo , Gana , Sementes/genética , Vigna/fisiologia
20.
Molecules ; 25(3)2020 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-32033149

RESUMO

Microalgae are microorganisms with the capacity to contribute to the sustainable and healthy food production, in addition to wastewater treatment. The subject of this work was to determine the potential of Scenedesmus obliquus microalga grown in brewery wastewater to act as a plant biostimulant. The germination index of watercress seeds, as well as the auxin-like activity in mung bean and cucumber, and in the cytokinin-like activity in cucumber bioassays were used to evaluate the biostimulant potential. Several biomass processes were studied, such as centrifugation, ultrasonication and enzymatic hydrolysis, as well as the final concentration of microalgal extracts to determine their influence in the biostimulant activity of the Scenedesmus biomass. The results showed an increase of 40% on the germination index when using the biomass at 0.1 g/L, without any pre-treatment. For auxin-like activity, the best results (up to 60% with respect to control) were obtained at 0.5 g/L of biomass extract, after a combination of cell disruption, enzymatic hydrolysis and centrifugation. For cytokinin-like activity, the best results (up to 187.5% with respect to control) were achieved without cell disruption, after enzymatic hydrolysis and centrifugation at a biomass extract concentration of 2 g/L.


Assuntos
Extratos Celulares/farmacologia , Cucumis sativus/crescimento & desenvolvimento , Nasturtium/crescimento & desenvolvimento , Raízes de Plantas/crescimento & desenvolvimento , Scenedesmus/metabolismo , Vigna/crescimento & desenvolvimento , Biodegradação Ambiental , Biomassa , Citocininas/metabolismo , Ácidos Indolacéticos/metabolismo , Microalgas/metabolismo , Águas Residuárias/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA