Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 83
Filtrar
1.
Nano Lett ; 23(11): 4844-4853, 2023 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-37220024

RESUMO

Here, we demonstrate the concerted inhibition of different influenza A virus (IAV) strains using a low-molecular-weight dual-action linear polymer. The 6'-sialyllactose and zanamivir conjugates of linear polyglycerol are optimized for simultaneous targeting of hemagglutinin and neuraminidase on the IAV surface. Independent of IAV subtypes, hemagglutination inhibition data suggest better adsorption of the heteromultivalent polymer than homomultivalent analogs onto the virus surface. Cryo-TEM images imply heteromultivalent compound-mediated virus aggregation. The optimized polymeric nanomaterial inhibits >99.9% propagation of various IAV strains 24 h postinfection in vitro at low nM concentrations and is up to 10000× more effective than the commercial zanamivir drug. In a human lung ex vivo multicyclic infection setup, the heteromultivalent polymer outperforms the commercial drug zanamivir and homomultivalent analogs or their physical mixtures. This study authenticates the translational potential of the dual-action targeting approach using small polymers for broad and high antiviral efficacy.


Assuntos
Alphainfluenzavirus , Glicosilação , Polímeros/química , Polímeros/farmacologia , Alphainfluenzavirus/efeitos dos fármacos , Influenza Humana/tratamento farmacológico , Antivirais/química , Antivirais/farmacologia , Humanos , Zanamivir/química , Zanamivir/farmacologia
2.
Acc Chem Res ; 54(3): 569-582, 2021 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-33448789

RESUMO

The field of total synthesis has reached a stage in which emphasis has been increasingly focused on synthetic efficiency rather than merely achieving the synthesis of a target molecule. The pursuit of synthetic efficiency, typically represented by step count and overall yield, is a rich source of inspiration and motivation for synthetic chemists to invent innovative strategies and methods. Among them, convergent strategy has been well recognized as an effective approach to improve efficiency. This strategy generally involves coupling of fragments with similar complexity to furnish the target molecule via subsequent cyclization or late-stage functionalization. Thus, methodologies that enable effective connection of fragments are critical to devising a convergent plan. In our laboratory, convergent strategy has served as a long-standing principle for pursuing efficient synthesis during the course of planning and implementing synthetic projects. In this Account, we summarize our endeavors in the convergent synthesis of natural products over the last ten years. We show how we identify reasonable bond disconnections and employ enabling synthetic methodologies to maximize convergency, leading to the efficient syntheses of over two-dozen highly complex molecules from eight disparate families.In detail, we categorize our work into three parts based on the diverse reaction types for fragment assembly. First, we demonstrate the application of a powerful single-electron reducing agent, SmI2, in a late-stage cyclization step, forging the polycyclic skeletons of structurally fascinating Galbulimima alkaloids and Leucosceptrum sesterterpenoids. Next, we showcase how three different types of cycloaddition reactions can simultaneously construct two challenging C-C bonds in a single step, providing concise entries to three distinct families, namely, spiroquinazoline alkaloids, gracilamine, and kaurane diterpenoids. In the third part, we describe convergent assembly of ent-kaurane diterpenoids, gelsedine-type alkaloids, and several drug molecules via employing some bifunctional synthons. To access highly oxidized ent-kaurane diterpenoids, we introduce the hallmark bicyclo[3.2.1]octane ring system at an early stage, and then execute coupling and cyclization by means of a Hoppe's homoaldol reaction and a Mukaiyama-Michael-type addition, respectively. Furthermore, we showcase how the orchestrated combination of an asymmetric Michael addition, a tandem oxidation-aldol reaction and a pinacol rearrangement can dramatically improve the efficiency in synthesizing gelsedine-type alkaloids, with nary a protecting group. Finally, to address the supply issue of several drugs, including anti-influenza drug zanamivir and antitumor agent Et-743, we exploit scalable and practical approaches to provide advantages over current routes in terms of cost, ease of execution, and efficiency.


Assuntos
Produtos Biológicos/síntese química , Alcaloides/síntese química , Alcaloides/química , Produtos Biológicos/química , Compostos Bicíclicos com Pontes/química , Carbono/química , Ciclização , Reação de Cicloadição , Diterpenos do Tipo Caurano/síntese química , Diterpenos do Tipo Caurano/química , Octanos/química , Oxirredução , Sesterterpenos/síntese química , Sesterterpenos/química , Estereoisomerismo , Trabectedina/síntese química , Trabectedina/química , Zanamivir/síntese química , Zanamivir/química
3.
Molecules ; 25(18)2020 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-32947893

RESUMO

Neuraminidase (NA) of influenza viruses enables the virus to access the cell membrane. It degrades the sialic acid contained in extracellular mucin. Later, it is responsible for releasing newly formed virions from the membrane of infected cells. Both processes become key functions within the viral cycle. Therefore, it is a therapeutic target for research of the new antiviral agents. Structure-activity relationships studies have revealed which are the important functional groups for the receptor-ligand interaction. Influenza virus type A NA activity was inhibited by five scaffolds without structural resemblance to sialic acid. Intending small organic compound repositioning along with drug repurposing, this study combined in silico simulations of ligand docking into the known binding site of NA, along with in vitro bioassays. The five proposed scaffolds are N-acetylphenylalanylmethionine, propanoic 3-[(2,5-dimethylphenyl) carbamoyl]-2-(piperazin-1-yl) acid, 3-(propylaminosulfonyl)-4-chlorobenzoic acid, ascorbic acid (vitamin C), and 4-(dipropylsulfamoyl) benzoic acid (probenecid). Their half maximal inhibitory concentration (IC50) was determined through fluorometry. An acidic reagent 2'-O-(4-methylumbelliferyl)-α-dN-acetylneuraminic acid (MUNANA) was used as substrate for viruses of human influenza H1N1 or avian influenza H5N2. Inhibition was observed in millimolar ranges in a concentration-dependent manner. The IC50 values of the five proposed scaffolds ranged from 6.4 to 73 mM. The values reflect a significant affinity difference with respect to the reference drug zanamivir (p < 0.001). Two compounds (N-acetyl dipeptide and 4-substituted benzoic acid) clearly showed competitive mechanisms, whereas ascorbic acid reflected non-competitive kinetics. The five small organic molecules constitute five different scaffolds with moderate NA affinities. They are proposed as lead compounds for developing new NA inhibitors which are not analogous to sialic acid.


Assuntos
Inibidores Enzimáticos/química , Vírus da Influenza A Subtipo H1N1/enzimologia , Vírus da Influenza A Subtipo H5N2/enzimologia , Neuraminidase/antagonistas & inibidores , Antivirais/química , Antivirais/metabolismo , Ácido Benzoico/química , Ácido Benzoico/metabolismo , Sítios de Ligação , Ligação Competitiva , Inibidores Enzimáticos/metabolismo , Humanos , Cinética , Ligantes , Simulação de Acoplamento Molecular , Ácido N-Acetilneuramínico/química , Neuraminidase/metabolismo , Relação Estrutura-Atividade , Zanamivir/química , Zanamivir/metabolismo
4.
Angew Chem Int Ed Engl ; 59(36): 15532-15536, 2020 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-32421225

RESUMO

In this study, we demonstrate the concept of "topology-matching design" for virus inhibitors. With the current knowledge of influenza A virus (IAV), we designed a nanoparticle-based inhibitor (nano-inhibitor) that has a matched nanotopology to IAV virions and shows heteromultivalent inhibitory effects on hemagglutinin and neuraminidase. The synthesized nano-inhibitor can neutralize the viral particle extracellularly and block its attachment and entry to the host cells. The virus replication was significantly reduced by 6 orders of magnitude in the presence of the reverse designed nano-inhibitors. Even when used 24 hours after the infection, more than 99.999 % inhibition is still achieved, which indicates such a nano-inhibitor might be a potent antiviral for the treatment of influenza infection.


Assuntos
Antivirais/farmacologia , Desenho de Fármacos , Vírus da Influenza A/efeitos dos fármacos , Influenza Humana/tratamento farmacológico , Nanopartículas/química , Zanamivir/farmacologia , Animais , Antivirais/síntese química , Antivirais/química , Cães , Glicerol/química , Glicerol/farmacologia , Humanos , Lactose/análogos & derivados , Lactose/química , Lactose/farmacologia , Células Madin Darby de Rim Canino/efeitos dos fármacos , Células Madin Darby de Rim Canino/virologia , Testes de Sensibilidade Microbiana , Estrutura Molecular , Tamanho da Partícula , Polímeros/química , Polímeros/farmacologia , Ácidos Siálicos/química , Ácidos Siálicos/farmacologia , Propriedades de Superfície , Replicação Viral/efeitos dos fármacos , Zanamivir/síntese química , Zanamivir/química
5.
Mol Pharm ; 15(9): 4110-4120, 2018 09 04.
Artigo em Inglês | MEDLINE | ID: mdl-30102858

RESUMO

With regular influenza epidemics and the prevalence of drug-resistant influenza virus strains, it is extremely crucial to develop effective and low-toxicity anti-influenza A virus drugs that act on conserved sites of novel targets. Here, we found a new anti-influenza virus compound, 1,3-dihydroxy-6-benzo[ c]chromene (D715-2441), from a library of 8026 small-molecule compounds by cell-based MTT assay and explored the underlying mechanisms. Our results revealed that D715-2441 possessed antiviral activities against multiple subtypes of influenza A viruses (IAVs) strains, including H1N1, H5N1, H7N9, H3N2, the clinical isolate 690 (H3), and oseltamivir-resistant strains with the H274Y NA mutation, and suppressed the early steps in the virus replication cycle. Further mechanistic studies indicated that D715-2441 clearly inhibited viral polymerase activity and directly influenced the location of the PB2 protein. Moreover, binding affinity analyses confirmed that D715-2441 bound specifically to the PB2cap protein. Further, protein sequence alignment and a computer-aided molecular docking indicated that highly conserved amino acid residues in the cap-binding pocket of PB2cap were possible binding sites for D715-2441, which indicates that D715-2441 might be employed as a cap-binding competitor. Moreover, the combination of D715-2441 and zanamivir possessed a remarkable synergistic antiviral effect, with an FICI value of 0.40. In conclusion, these results strongly suggest that D715-2441 has potential as a promising candidate against IAV infection. More importantly, our work offers novel options for the strategic development of PB2cap inhibitors of IAV.


Assuntos
Antivirais/farmacologia , RNA Polimerase Dependente de RNA/antagonistas & inibidores , Proteínas Virais/antagonistas & inibidores , Células A549 , Animais , Antivirais/química , Western Blotting , Linhagem Celular , Cães , Sinergismo Farmacológico , Células HEK293 , Humanos , Vírus da Influenza A Subtipo H1N1/efeitos dos fármacos , Vírus da Influenza A Subtipo H1N1/metabolismo , Vírus da Influenza A Subtipo H3N2/efeitos dos fármacos , Vírus da Influenza A Subtipo H3N2/metabolismo , Virus da Influenza A Subtipo H5N1/efeitos dos fármacos , Virus da Influenza A Subtipo H5N1/metabolismo , Subtipo H7N9 do Vírus da Influenza A/efeitos dos fármacos , Subtipo H7N9 do Vírus da Influenza A/metabolismo , Microscopia de Fluorescência , Simulação de Acoplamento Molecular , Oseltamivir/química , Oseltamivir/farmacologia , Reação em Cadeia da Polimerase em Tempo Real , Ressonância de Plasmônio de Superfície , Proteínas Virais/metabolismo , Replicação Viral/efeitos dos fármacos , Zanamivir/química , Zanamivir/farmacologia
6.
Arch Microbiol ; 200(7): 1129-1133, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-29777255

RESUMO

Bacterial vaginosis is a genital tract infection, thought to be caused by transformation of a lactobacillus-rich flora to a dysbiotic microbiota enriched in mixed anaerobes. The most prominent of these is Gardnerella vaginalis (GV), an anaerobic pathogen that produces sialidase enzyme to cleave terminal sialic acid residues from human glycans. Notably, high sialidase activity is associated with preterm birth and low birthweight. We explored the potential of the sialidase inhibitor Zanamavir against GV whole cell sialidase activity using methyl-umbelliferyl neuraminic acid (MU-NANA) cleavage assays, with Zanamavir causing a 30% reduction in whole cell GV sialidase activity (p < 0.05). Furthermore, cellular invasion assays using HeLa cervical epithelial cells, infected with GV, demonstrated that Zanamivir elicited a 50% reduction in cell association and invasion (p < 0.05). Our data thus highlight that pharmacological sialidase inhibitors are able to modify BV-associated sialidase activity and influence host-pathogen interactions and may represent novel therapeutic adjuncts.


Assuntos
Proteínas de Bactérias/antagonistas & inibidores , Inibidores Enzimáticos/química , Gardnerella vaginalis/enzimologia , Neuraminidase/antagonistas & inibidores , Vaginose Bacteriana/microbiologia , Zanamivir/química , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Inibidores Enzimáticos/farmacologia , Células Epiteliais/microbiologia , Feminino , Gardnerella vaginalis/química , Gardnerella vaginalis/efeitos dos fármacos , Gardnerella vaginalis/fisiologia , Células HeLa , Interações Hospedeiro-Patógeno , Humanos , Neuraminidase/química , Neuraminidase/metabolismo , Vagina/microbiologia , Zanamivir/farmacologia
7.
Bioorg Med Chem ; 26(19): 5349-5358, 2018 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-29903413

RESUMO

Inhibitors of viral neuraminidase enzymes have been previously developed as therapeutics. Humans can express multiple forms of neuraminidase enzymes (NEU1, NEU2, NEU3, NEU4) that share a similar active site and enzymatic mechanism with their viral counterparts. Using a panel of purified human neuraminidase enzymes, we tested the inhibitory activity of 2-deoxy-2,3-dehydro-N-acetylneuraminic acid (DANA), zanamivir, oseltamivir, and peramivir against each of the human isoenzymes. We find that, with the exceptions of DANA and zanamivir, these compounds show generally poor activity against the human neuraminidase enzymes. To provide insight into the interactions of viral inhibitors with human neuraminidases, we conducted molecular dynamics simulations using homology models based on coordinates reported for NEU2. Simulations revealed that an organized water is displaced by zanamivir in binding to NEU2 and NEU3 and confirmed the critical importance of engaging the binding pocket of the C7-C9 glycerol sidechain. Our results suggest that compounds designed to target the human neuraminidases should provide more selective tools for interrogating these enzymes. Furthermore, they emphasize a need for additional structural data to enable structure-based drug design in these systems.


Assuntos
Inibidores Enzimáticos/química , Neuraminidase/antagonistas & inibidores , Proteínas Virais/antagonistas & inibidores , Sequência de Aminoácidos , Antivirais/química , Antivirais/metabolismo , Sítios de Ligação , Domínio Catalítico , Inibidores Enzimáticos/metabolismo , Humanos , Concentração Inibidora 50 , Isoenzimas/antagonistas & inibidores , Isoenzimas/metabolismo , Cinética , Simulação de Dinâmica Molecular , Neuraminidase/metabolismo , Alinhamento de Sequência , Proteínas Virais/metabolismo , Zanamivir/química , Zanamivir/metabolismo
8.
Anal Chem ; 89(9): 4889-4896, 2017 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-28374582

RESUMO

Natural product screening for new bioactive compounds can greatly benefit from low reagents consumption and high throughput capacity of droplet-based microfluidic systems. However, the creation of large droplet libraries in which each droplet carries a different compound is a challenging task. A possible solution is to use an HPLC coupled to a droplet generating microfluidic device to sequentially encapsulate the eluting compounds. In this work we demonstrate the feasibility of carrying out enzyme inhibiting assays inside nanoliter droplets with the different components of a natural crude extract after being separated by a coupled HPLC column. In the droplet formation zone, the eluted components are mixed with an enzyme and a fluorogenic substrate that permits to follow the enzymatic reaction in the presence of each chromatographic peak and identify those inhibiting the enzyme activity. Using a fractal shape channel design and automated image analysis, we were able to identify inhibitors of Clostridium perfringens neuraminidase present in a root extract of the Pelargonium sidoides plant. This work demonstrates the feasibility of bioprofiling a natural crude extract after being separated in HPLC using microfluidic droplets online and represents an advance in the miniaturization of natural products screening.


Assuntos
Produtos Biológicos/análise , Cromatografia Líquida de Alta Pressão/métodos , Inibidores Enzimáticos/análise , Técnicas Analíticas Microfluídicas/métodos , Neuraminidase/antagonistas & inibidores , Extratos Vegetais/análise , Produtos Biológicos/química , Clostridium perfringens/enzimologia , Ensaios Enzimáticos , Inibidores Enzimáticos/química , Pelargonium/química , Extratos Vegetais/química , Raízes de Plantas/química , Zanamivir/análise , Zanamivir/química
9.
Molecules ; 22(11)2017 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-29149072

RESUMO

Neuraminidaseis a key enzyme in the life cycle of influenza viruses and is present in some bacterial pathogens. We here assess the inhibitory potency of plant tannins versus clinically used inhibitors on both a viral and a bacterial model neuraminidase by applying the 2'-(4-methylumbelliferyl)-α-d-N-acetylneuraminic acid (MUNANA)-based activity assay. A range of flavan-3-ols, ellagitannins and chemically defined proanthocyanidin fractions was evaluated in comparison to oseltamivir carboxylate and zanamivir for their inhibitory activities against viral influenza A (H1N1) and bacterial Vibrio cholerae neuraminidase (VCNA). Compared to the positive controls, all tested polyphenols displayed a weak inhibition of the viral enzyme but similar or even higher potency on the bacterial neuraminidase. Structure-activity relationship analyses revealed the presence of galloyl groups and the hydroxylation pattern of the flavan skeleton to be crucial for inhibitory activity. The combination of zanamivir and EPs® 7630 (root extract of Pelargonium sidoides) showed synergistic inhibitory effects on the bacterial neuraminidase. Co-crystal structures of VCNA with oseltamivir carboxylate and zanamivir provided insight into bacterial versus viral enzyme-inhibitor interactions. The current data clearly indicate that inhibitor potency strongly depends on the biological origin of the enzyme and that results are not readily transferable. The therapeutic relevance of our findings is briefly discussed.


Assuntos
Antibacterianos/farmacologia , Antivirais/farmacologia , Ensaios Enzimáticos , Neuraminidase/antagonistas & inibidores , Oseltamivir/análogos & derivados , Taninos/farmacologia , Zanamivir/farmacologia , Antibacterianos/química , Antivirais/química , Sinergismo Farmacológico , Ensaios Enzimáticos/métodos , Taninos Hidrolisáveis/farmacologia , Concentração Inibidora 50 , Neuraminidase/química , Oseltamivir/química , Oseltamivir/farmacologia , Taninos/química , Vibrio cholerae/efeitos dos fármacos , Vibrio cholerae/enzimologia , Proteínas Virais/antagonistas & inibidores , Zanamivir/química
10.
AAPS PharmSciTech ; 18(5): 1585-1594, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-27624069

RESUMO

The full-resolution next generation impactor (NGI) and three abbreviated impactor systems were used to obtain the apparent aerodynamic particle size distribution (APSD) and other quality measures for marketed dry powder inhalers (DPIs) using the compendial method and efficient data analysis (EDA). APSD for the active pharmaceutical ingredient (API) in Spiriva® Handihaler®, Foradil® Aerolizer®, and Relenza® Diskhaler® was obtained using a full-resolution NGI at 39, 60, and 90 L/min, respectively. Two reduced NGI (rNGI) configurations, the filter-only configuration (rNGI-f) and the modified-cup configuration (rNGI-mc), and the fast-screening impactor (FSI) with appropriate inserts to provide a 5-µm cut size were evaluated. The fine particle dose (FPD) obtained using the FSI for Spiriva was statistically similar to that obtained using the full NGI. However, the FPD for both Foradil and Relenza obtained using the FSI was significantly different from that obtained using the full NGI. Despite this, no significant differences were observed for the fine particle fraction (FPF) obtained using the FSI relative to that obtained from the full NGI for any of the DPIs. The use of abbreviated impactor systems appears promising with good agreement observed with the full-resolution NGI, except for small differences observed for the rNGI-mc configuration. These small differences may be product- and/or flow rate-specific, and further evaluation will be required to resolve these differences.


Assuntos
Aerossóis , Inaladores de Pó Seco/métodos , Fumarato de Formoterol , Brometo de Tiotrópio , Zanamivir , Administração por Inalação , Aerossóis/química , Aerossóis/farmacologia , Fumarato de Formoterol/administração & dosagem , Fumarato de Formoterol/química , Humanos , Teste de Materiais/métodos , Inaladores Dosimetrados , Tamanho da Partícula , Medicamentos para o Sistema Respiratório/administração & dosagem , Medicamentos para o Sistema Respiratório/química , Tecnologia Farmacêutica/instrumentação , Tecnologia Farmacêutica/métodos , Brometo de Tiotrópio/administração & dosagem , Brometo de Tiotrópio/química , Zanamivir/administração & dosagem , Zanamivir/química
11.
BMC Bioinformatics ; 17(Suppl 19): 512, 2016 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-28155702

RESUMO

BACKGROUND: Influenza virus spreads infection by two main surface glycoproteins, namely hemagglutinin (HA) and neuraminidase (NA). NA cleaves the sialic acid receptors eventually releasing newly formed virus particles which then invade new cells. Inhibition of NA could limit the replication of virus to one round which is insufficient to cause the disease. RESULTS: An experimentally reported series of acylguanidine zanamivir derivatives was used to develop GQSAR model targeting NA in different strains of influenza virus, H1N1 and H3N2. A combinatorial library was developed and their inhibitory activities were predicted using the GQSAR model. CONCLUSION: The top leads were analyzed by docking which revealed the binding modes of these inhibitors in the active site of NA (150-loop). The top compound (AMA) was selected for carrying out molecular dynamics simulations for 15 ns which provided insights into the time dependent dynamics of the designed leads. AMA possessed a docking score of -8.26 Kcal/mol with H1N1 strain and -7.00 Kcal/mol with H3N2 strain. Ligand-bound complexes of both H1N1 and H3N2 were observed to be stable for 11 ns and 7 ns respectively. ADME descriptors were also calculated to study the pharmacokinetic properties of AMA which revealed its drug-like properties.


Assuntos
Antivirais/farmacologia , Desenho de Fármacos , Inibidores Enzimáticos/farmacologia , Vírus da Influenza A Subtipo H1N1/efeitos dos fármacos , Vírus da Influenza A Subtipo H3N2/efeitos dos fármacos , Neuraminidase/antagonistas & inibidores , Zanamivir/farmacologia , Antivirais/química , Domínio Catalítico , Inibidores Enzimáticos/química , Humanos , Vírus da Influenza A Subtipo H1N1/enzimologia , Vírus da Influenza A Subtipo H3N2/enzimologia , Influenza Humana/tratamento farmacológico , Influenza Humana/enzimologia , Influenza Humana/virologia , Simulação de Dinâmica Molecular , Neuraminidase/metabolismo , Zanamivir/química
12.
Biochemistry ; 54(36): 5589-604, 2015 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-26307636

RESUMO

Myxoviruses such as influenza A virus (IAV) and respiratory syncytial virus (RSV) are major human pathogens, mandating the development of novel therapeutics. To establish a high-throughput screening protocol for the simultaneous identification of pathogen- and host-targeted hit candidates against either pathogen or both, we have attempted co-infection of cells with IAV and RSV. However, viral replication kinetics were incompatible, RSV signal window was low, and an IAV-driven minireplicon reporter assay used in initial screens narrowed the host cell range and restricted the assay to single-cycle infections. To overcome these limitations, we developed an RSV strain carrying firefly luciferase fused to an innovative universal small-molecule assisted shut-off domain, which boosted assay signal window, and a hyperactive fusion protein that synchronized IAV and RSV reporter expression kinetics and suppressed the identification of RSV entry inhibitors sensitive to a recently reported RSV pan-resistance mechanism. Combined with a replication-competent recombinant IAV strain harboring nanoluciferase, the assay performed well on a human respiratory cell line and supports multicycle infections. Miniaturized to 384-well format, the protocol was validated through screening of a set of the National Institutes of Health Clinical Collection (NCC) in quadruplicate. These test screens demonstrated favorable assay parameters and reproducibility. Application to a LOPAC library of bioactive compounds in a proof-of-concept campaign detected licensed antimyxovirus therapeutics, ribavirin and the neuraminidase inhibitor zanamivir, and identified two unexpected RSV-specific hit candidates, Fenretinide and the opioid receptor antagonist BNTX-7. Hits were evaluated in direct and orthogonal dose-response counterscreens using a standard recRSV reporter strain expressing Renilla luciferase.


Assuntos
Antivirais/química , Vírus da Influenza A/genética , Vírus Sinciciais Respiratórios/genética , Animais , Antivirais/farmacologia , Compostos de Benzilideno/farmacologia , Linhagem Celular , Coinfecção , Cães , Relação Dose-Resposta a Droga , Estudos de Viabilidade , Fenretinida/química , Fenretinida/farmacologia , Genes Reporter , Ensaios de Triagem em Larga Escala , Humanos , Vírus da Influenza A/efeitos dos fármacos , Vírus da Influenza A/fisiologia , Luciferases de Vaga-Lume/genética , Luciferases de Renilla/genética , Naltrexona/análogos & derivados , Naltrexona/farmacologia , Antagonistas de Entorpecentes/química , Antagonistas de Entorpecentes/farmacologia , Neuraminidase/antagonistas & inibidores , Vírus Sinciciais Respiratórios/efeitos dos fármacos , Vírus Sinciciais Respiratórios/fisiologia , Ribavirina/química , Ribavirina/farmacologia , Internalização do Vírus/efeitos dos fármacos , Replicação Viral , Zanamivir/química , Zanamivir/farmacologia
13.
J Mol Recognit ; 28(9): 521-7, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25727669

RESUMO

Antiviral resistance is currently monitored by a labelled enzymatic assay, which can give inconsistent results because of the short half-life of the labelled product, and variations in assay conditions. In this paper, we describe a competitive surface plasmon resonance (SPR) inhibition assay for measuring the sensitivities of wild-type neuraminidase (WT NA) and the H274Y (histidine 274 tyrosine) NA mutant to antiviral drugs. The two NA isoforms were expressed in High-five™ (Trichoplusia ni) insect cells. A spacer molecule (1,6-hexanediamine (HDA)) was conjugated to the 7-hydroxyl group of zanamivir, and the construct (HDA-zanamivir) was immobilized onto a SPR sensor chip to obtain a final immobilization response of 431 response units. The immobilized HDA-zanamivir comprised a bio-specific ligand for the WT and mutant proteins. The effects of the natural substrate (sialic acid) and two inhibitors (zanamivir and oseltamivir) on NA binding to the immobilized ligand were studied. The processed SPR data was analysed to determine 50% inhibitory concentrations (IC50-spr ), using a log dose-response curve fit. Although both NA isoforms had almost identical IC50-spr values for sialic acid (WT = 5.5 nM; H274Y mutant = 3.25 nM) and zanamivir (WT = 2.16 nM; H274Y mutant = 2.42 nM), there were significant differences between the IC50-spr values obtained for the WT (7.7 nM) and H274Y mutant (256 nM) NA in the presence of oseltamivir, indicating that oseltamivir has a reduced affinity for the H274Y mutant. The SPR inhibition assay strategy presented in this work could be applied for the rapid screening of newly emerging variants of NA for their sensitivity to antiviral drugs.


Assuntos
Antivirais/farmacologia , Inibidores Enzimáticos/metabolismo , Influenza Humana/tratamento farmacológico , Neuraminidase/antagonistas & inibidores , Oseltamivir/farmacologia , Ressonância de Plasmônio de Superfície , Zanamivir/farmacologia , Animais , Antivirais/química , Linhagem Celular , Humanos , Influenza Humana/genética , Influenza Humana/metabolismo , Influenza Humana/virologia , Concentração Inibidora 50 , Insetos/citologia , Mutação , Neuraminidase/metabolismo , Oseltamivir/química , Zanamivir/química
14.
J Chem Inf Model ; 55(9): 1936-43, 2015 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-26247106

RESUMO

Assessment of accurate drug binding affinity to a protein remains a challenge for in silico drug development. In this research, we used the smooth reaction path generation (SRPG) method to calculate binding free energies and determine potential of mean forces (PMFs) along the smoothed dissociation paths of influenza A neuraminidase and its variants with oseltamivir (Tamiflu) and zanamivir (Relenza) inhibitors. With the gained results, we found that the binding free energies of neuraminidase A/H5N1 in WT and two mutants (including H274Y and N294S) with oseltamivir and zanamivir show good agreement with experimental results. Additionally, the thermodynamic origin of the drug resistance of the mutants was also discussed from the PMF profiles.


Assuntos
Simulação por Computador , Virus da Influenza A Subtipo H5N1/enzimologia , Neuraminidase/química , Neuraminidase/metabolismo , Oseltamivir/metabolismo , Zanamivir/metabolismo , Domínio Catalítico , Sistemas de Liberação de Medicamentos , Resistência a Medicamentos , Previsões , Humanos , Virus da Influenza A Subtipo H5N1/metabolismo , Ligantes , Modelos Biológicos , Oseltamivir/química , Ligação Proteica , Termodinâmica , Zanamivir/química
15.
Proc Natl Acad Sci U S A ; 109(50): 20385-90, 2012 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-23185023

RESUMO

Covalently conjugating multiple copies of the drug zanamivir (ZA; the active ingredient in Relenza) via a flexible linker to poly-l-glutamine (PGN) enhances the anti-influenza virus activity by orders of magnitude. In this study, we investigated the mechanisms of this phenomenon. Like ZA itself, the PGN-attached drug (PGN-ZA) binds specifically to viral neuraminidase and inhibits both its enzymatic activity and the release of newly synthesized virions from infected cells. Unlike monomeric ZA, however, PGN-ZA also synergistically inhibits early stages of influenza virus infection, thus contributing to the markedly increased antiviral potency. This inhibition is not caused by a direct virucidal effect, aggregation of viruses, or inhibition of viral attachment to target cells and the subsequent endocytosis; rather, it is a result of interference with intracellular trafficking of the endocytosed viruses and the subsequent virus-endosome fusion. These findings both rationalize the great anti-influenza potency of PGN-ZA and reveal that attaching ZA to a polymeric chain confers a unique mechanism of antiviral action potentially useful for minimizing drug resistance.


Assuntos
Antivirais/administração & dosagem , Vírus da Influenza A Subtipo H1N1/efeitos dos fármacos , Influenza Humana/tratamento farmacológico , Influenza Humana/virologia , Infecções por Orthomyxoviridae/tratamento farmacológico , Infecções por Orthomyxoviridae/virologia , Zanamivir/análogos & derivados , Animais , Antivirais/química , Cães , Sinergismo Farmacológico , Endocitose/efeitos dos fármacos , Glicoproteínas de Hemaglutininação de Vírus da Influenza/efeitos dos fármacos , Humanos , Vírus da Influenza A Subtipo H1N1/patogenicidade , Vírus da Influenza A Subtipo H1N1/fisiologia , Vírus da Influenza A Subtipo H1N1/ultraestrutura , Células Madin Darby de Rim Canino , Microscopia Eletrônica de Transmissão , Neuraminidase/antagonistas & inibidores , Peptídeos/química , Zanamivir/administração & dosagem , Zanamivir/química
16.
Pharm Res ; 31(2): 466-74, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24065587

RESUMO

PURPOSE: Previously, polymer-attached zanamivir had been found to inhibit influenza A viruses in vitro far better than did small-molecule zanamivir (1) itself. The aim of this study was to identify in vitro-using the plaque reduction assay-a highly potent 1-polymer conjugate, and subsequently test its antiviral efficacy in vivo. METHODS: By examining the structure-activity relationship of 1-polymer conjugates in the plaque assay, we have determined that the most potent inhibitor against several representative influenza virus strains has a neutral high-molecular-weight backbone and a short alkyl linker. We have examined this optimal polymeric inhibitor for efficacy and immunogenicity in the mouse and ferret models of infection. RESULTS: 1 attached to poly-L-glutamine is an effective therapeutic for established influenza infection in ferrets, reducing viral titers up to 30-fold for 6 days. There is also up to a 190-fold reduction in viral load when the drug is used as a combined prophylactic/therapeutic in mice. Additionally, we see no evidence that the drug conjugate stimulates an immune response in mice upon repeat administration. CONCLUSIONS: 1 attached to a neutral high-molecular-weight backbone through a short alkyl linker drastically reduced both in vitro and in vivo titers compared to those observed with 1 itself. Thus, further development of this polymeric zanamivir for the mitigation of influenza infection seems warranted.


Assuntos
Antivirais/química , Antivirais/farmacologia , Glutamina/química , Vírus da Influenza A/efeitos dos fármacos , Infecções por Orthomyxoviridae/tratamento farmacológico , Zanamivir/química , Zanamivir/farmacologia , Animais , Furões/virologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Infecções por Orthomyxoviridae/virologia , Relação Estrutura-Atividade
17.
BMC Bioinformatics ; 14 Suppl 16: S7, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24564719

RESUMO

BACKGROUND: Since late March 2013, there has been another global health concern with a sudden wave of flu infections by a novel strain of avian influenza A (H7N9) virus in China. To-date, there have been more than 100 infections with 23 deaths. It is more worrying as this viral strain has never been detected in humans and only been found to be of low-pathogenicity. Currently, there are 3 effective neuraminidase inhibitors for this H7N9 virus strain, i.e. oseltamivir, zanamivir, and peramivir. These drugs have been used for treatment of the H7N9 influenza in China. However, how these inhibitors work and affect the binding cavity of the novel H7N9 neuraminidase in the presence of potential mutations has not been disclosed. In our study, we investigate steric effects and subsequently show the conformational restraints of the inhibitor-binding site of the non-mutated and mutated H7N9 neuraminidase structures to different drug compounds. RESULTS: Combination of molecular docking and Molecular Dynamics simulation reveal that zanamivir forms more favorable and stable complex than oseltamivir and peramivir when binding to the active site of the H7N9 neuraminidase. And it is likely that the novel influenza A (H7N9) virus adopts a higher probability to acquire resistance to peramivir than the other two inhibitors. Conformational changes induced by the mutation R289K causes loss of number of hydrogen bonds between the inhibitors and the H7N9 viral neuraminidase in 2 out of 3 complexes. In addition, our results of binding-affinity relationships of the 3 inhibitors with the viral neuraminidase proteins of previous pandemics (H1N1, H5N1) and the current novel H7N9 reflected the extent of binding effectiveness of the 3 inhibitors to the novel H7N9 neuraminidase. CONCLUSIONS: The results are novel and specific for the A/Hangzhou/1/2013(H7N9) influenza strain. Furthermore, the protocol could be useful for further drug-binding analysis and prediction of future viral mutations to which the virus evolves through adaptation and acquires resistance to the current available drugs.


Assuntos
Antivirais/química , Inibidores Enzimáticos/química , Subtipo H7N9 do Vírus da Influenza A/enzimologia , Neuraminidase/antagonistas & inibidores , Proteínas Virais/antagonistas & inibidores , Ácidos Carbocíclicos , Antivirais/farmacologia , Ciclopentanos/química , Ciclopentanos/farmacologia , Farmacorresistência Viral , Inibidores Enzimáticos/farmacologia , Guanidinas/química , Guanidinas/farmacologia , Subtipo H7N9 do Vírus da Influenza A/efeitos dos fármacos , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Mutação , Neuraminidase/química , Neuraminidase/genética , Oseltamivir/química , Oseltamivir/farmacologia , Proteínas Virais/química , Proteínas Virais/genética , Zanamivir/química , Zanamivir/farmacologia
18.
J Am Chem Soc ; 135(36): 13254-7, 2013 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-24001125

RESUMO

A reagent panel containing ten 4-substituted 4-nitrophenyl α-D-sialosides and a second panel of the corresponding sialic acid glycals were synthesized and used to probe the inhibition mechanism for two neuraminidases, the N2 enzyme from influenza type A virus and the enzyme from Micromonospora viridifaciens. For the viral enzyme the logarithm of the inhibition constant (Ki) correlated with neither the logarithm of the catalytic efficiency (kcat/Km) nor catalytic proficiency (kcat/Km kun). These linear free energy relationship data support the notion that these inhibitors, which include the therapeutic agent Relenza, are not transition state mimics for the enzyme-catalyzed hydrolysis reaction. Moreover, for the influenza enzyme, a correlation (slope, 0.80 ± 0.08) is observed between the logarithms of the inhibition (Ki) and Michaelis (Km) constants. We conclude that the free energy for Relenza binding to the influenza enzyme mimics the enzyme-substrate interactions at the Michaelis complex. Thus, an influenza mutational response to a 4-substituted sialic acid glycal inhibitor can weaken the interactions between the inhibitor and the viral neuraminidase without a concomitant decrease in free energy of binding for the substrate at the enzyme-catalyzed hydrolysis transition state. The current findings make it clear that new structural motifs and/or substitution patterns need to be developed in the search for a bona fide influenza viral neuraminidase transition state analogue inhibitor.


Assuntos
Antivirais/farmacologia , Farmacorresistência Viral , Inibidores Enzimáticos/farmacologia , Vírus da Influenza A/efeitos dos fármacos , Neuraminidase/metabolismo , Zanamivir/farmacologia , Antivirais/síntese química , Antivirais/química , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/química , Vírus da Influenza A/enzimologia , Testes de Sensibilidade Microbiana , Micromonospora/enzimologia , Conformação Molecular , Neuraminidase/antagonistas & inibidores , Relação Estrutura-Atividade , Zanamivir/síntese química , Zanamivir/química
19.
PLoS Pathog ; 7(10): e1002249, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22028647

RESUMO

The 2009 H1N1 influenza pandemic (pH1N1) led to record sales of neuraminidase (NA) inhibitors, which has contributed significantly to the recent increase in oseltamivir-resistant viruses. Therefore, development and careful evaluation of novel NA inhibitors is of great interest. Recently, a highly potent NA inhibitor, laninamivir, has been approved for use in Japan. Laninamivir is effective using a single inhaled dose via its octanoate prodrug (CS-8958) and has been demonstrated to be effective against oseltamivir-resistant NA in vitro. However, effectiveness of laninamivir octanoate prodrug against oseltamivir-resistant influenza infection in adults has not been demonstrated. NA is classified into 2 groups based upon phylogenetic analysis and it is becoming clear that each group has some distinct structural features. Recently, we found that pH1N1 N1 NA (p09N1) is an atypical group 1 NA with some group 2-like features in its active site (lack of a 150-cavity). Furthermore, it has been reported that certain oseltamivir-resistant substitutions in the NA active site are group 1 specific. In order to comprehensively evaluate the effectiveness of laninamivir, we utilized recombinant N5 (typical group 1), p09N1 (atypical group 1) and N2 from the 1957 pandemic H2N2 (p57N2) (typical group 2) to carry out in vitro inhibition assays. We found that laninamivir and its octanoate prodrug display group specific preferences to different influenza NAs and provide the structural basis of their specific action based upon their novel complex crystal structures. Our results indicate that laninamivir and zanamivir are more effective against group 1 NA with a 150-cavity than group 2 NA with no 150-cavity. Furthermore, we have found that the laninamivir octanoate prodrug has a unique binding mode in p09N1 that is different from that of group 2 p57N2, but with some similarities to NA-oseltamivir binding, which provides additional insight into group specific differences of oseltamivir binding and resistance.


Assuntos
Antivirais/farmacologia , Inibidores Enzimáticos/farmacologia , Vírus da Influenza A Subtipo H1N1/efeitos dos fármacos , Neuraminidase/antagonistas & inibidores , Pró-Fármacos/farmacologia , Zanamivir/análogos & derivados , Antivirais/química , Caprilatos/química , Caprilatos/farmacologia , Domínio Catalítico/efeitos dos fármacos , Domínio Catalítico/fisiologia , Farmacorresistência Viral/efeitos dos fármacos , Inibidores Enzimáticos/química , Guanidinas , Humanos , Vírus da Influenza A Subtipo H1N1/enzimologia , Concentração Inibidora 50 , Oseltamivir/química , Oseltamivir/farmacologia , Pró-Fármacos/química , Piranos , Ácidos Siálicos , Zanamivir/química , Zanamivir/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA