Your browser doesn't support javascript.
loading
Structural evolution of the [(CO2)n(H2O)]- cluster anions: quantifying the effect of hydration on the excess charge accommodation motif.
Muraoka, Azusa; Inokuchi, Yoshiya; Hammer, Nathan I; Shin, Joong-Won; Johnson, Mark A; Nagata, Takashi.
Afiliação
  • Muraoka A; Department of Basic Science, Graduate School of Arts and Sciences, The University of Tokyo, Komaba, Meguro-ku, Tokyo 153-8902, Japan.
J Phys Chem A ; 113(31): 8942-8, 2009 Aug 06.
Article em En | MEDLINE | ID: mdl-19603758
The [(CO2)n(H2O)]- cluster anions are studied using infrared photodissociation (IPD) spectroscopy in the 2800-3800 cm(-1) range. The observed IPD spectra display a drastic change in the vibrational band features at n = 4, indicating a sharp discontinuity in the structural evolution of the monohydrated cluster anions. The n = 2 and 3 spectra are composed of a series of sharp bands around 3600 cm(-1), which are assignable to the stretching vibrations of H2O bound to C2O4- in a double ionic hydrogen-bonding (DIHB) configuration, as was previously discussed (J. Chem. Phys. 2005, 122, 094303). In the n > or = 4 spectrum, a pair of intense bands additionally appears at approximately 3300 cm(-1). With the aid of ab initio calculations at the MP2/6-31+G* level, the 3300 cm(-1) bands are assigned to the bending overtone and the hydrogen-bonded OH vibration of H2O bound to CO2- via a single O-H...O linkage. Thus, the structures of [(CO2)n(H2O)]- evolve with cluster size such that DIHB to C2O4- is favored in the smaller clusters with n = 2 and 3 whereas CO2- is preferentially stabilized via the formation of a single ionic hydrogen-bonding (SIHB) configuration in the larger clusters with n > or = 4.

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2009 Tipo de documento: Article País de afiliação: Japão

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2009 Tipo de documento: Article País de afiliação: Japão