Your browser doesn't support javascript.
loading
Reactivity of the latent 12-electron fragment [Rh(PiBu3)2]+ with aryl bromides: aryl-Br and phosphine ligand C-H activation.
Townsend, Nell S; Chaplin, Adrian B; Abu Naser, M; Thompson, Amber L; Rees, Nicholas H; Macgregor, Stuart A; Weller, Andrew S.
Afiliação
  • Townsend NS; Department of Chemistry, Inorganic Chemistry Laboratory, University of Oxford, South Parks Road, Oxford, OX1 3QR UK.
Chemistry ; 16(28): 8376-89, 2010 Jul 26.
Article em En | MEDLINE | ID: mdl-20572181
ABSTRACT
Oxidative addition of aryl bromides to 12-electron [Rh(PiBu(3))(2)][BAr(F)(4)] (Ar(F)=3,5-(CF(3))(2)C(6)H(3)) forms a variety of products. With p-tolyl bromides, Rh(III) dimeric complexes result [Rh(PiBu(3))(2)(o/p-MeC(6)H(4))(mu-Br)](2)[BAr(F)(4)](2). Similarly, reaction with p-ClC(6)H(4)Br gives [Rh(PiBu(3))(2)(p-ClC(6)H(4))(mu-Br)](2)[BAr(F)(4)](2). In contrast, the use of o-BrC(6)H(4)Me leads to a product in which toluene has been eliminated and an isobutyl phosphine has undergone C-H activation [Rh{PiBu(2)(CH(2)CHCH(3)CH(2))}(PiBu(3))(mu-Br)](2)[BAr(F)(4)](2). Trapping experiments with ortho-bromo anisole or ortho-bromo thioanisole indicate that a possible intermediate for this process is a low-coordinate Rh(III) complex that then undergoes C-H activation. The anisole and thioanisole complexes have been isolated and their structures show OMe or SMe interactions with the metal centre alongside supporting agostic interactions, [Rh(PiBu(3))(2)(C(6)H(4)OMe)Br][BAr(F)(4)] (the solid-state structure of the 5-methyl substituted analogue is reported) and [Rh(PiBu(3))(2)(C(6)H(4)SMe)Br][BAr(F)(4)]. The anisole-derived complex proceeds to give [Rh{PiBu(2)(CH(2)CHCH(3)CH(2))}(PiBu(3))(mu-Br)](2)[BAr(F)(4)](2), whereas the thioanisole complex is unreactive. The isolation of [Rh(PiBu(3))(2)(C(6)H(4)OMe)Br][BAr(F)(4)] and its onward reactivity to give the products of C-H activation and aryl elimination suggest that it is implicated on the pathway of a sigma-bond metathesis reaction, a hypothesis strengthened by DFT calculations. Calculations also suggest that C-H bond cleavage through phosphine-assisted deprotonation of a non-agostic bond is also competitive, although the subsequent protonation of the aryl ligand is too high in energy to account for product formation. C-H activation through oxidative addition is also ruled out on the basis of these calculations. These new complexes have been characterised by solution NMR/ESIMS techniques and in the solid-state by X-ray crystallography.

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2010 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2010 Tipo de documento: Article