Distinctive sorption mechanisms of 4-chlorophenol with black carbons as elucidated by different pH.
Sci Total Environ
; 433: 523-9, 2012 Sep 01.
Article
em En
| MEDLINE
| ID: mdl-22842752
Black carbon (BC) has been considered as an important sorbent in the environment in recent years due to its high sorption capacity and unique sorption behavior. Sorption characteristics of black carbons from two main sources were investigated to get a better understanding of organic chemical fate in the environment. The present study showed sorption mechanisms of 4-chlorophenol, a common organic contaminant in the surroundings, in two kinds of black carbons, soot surrogate (BC1) and environmental char (BC2) derived from rice straw. Sorption capacity of 4-chlorophenol was much higher in BC1 than on BC2 due to the larger surface area of BC1. However, the surface-area normalized sorption coefficients (sorption capacity per surface area) of BC2 were higher than those of BC1, indicating electrostatic attraction and actions of polar foundational groups on BC2 can react with 4-chlorophenol. With increasing temperature, sorption of BC1 decreased but the sorption of BC2 significantly increased at pH 10 and only slightly increased at pH 4. An exothermic sorption reaction was found for BC1; however, an endothermic reaction of chemical sorption occurred on BC2 at pH 10 due to the electrostatic attraction. At pH4, sorption capacity of BC2 decreased and the small positive sorption enthalpy indicated that less electrostatic attractions occurred because of the neutral form of 4-chlorophenol and the domination of mainly hydrophobic interactions.
Texto completo:
1
Base de dados:
MEDLINE
Idioma:
En
Ano de publicação:
2012
Tipo de documento:
Article