Your browser doesn't support javascript.
loading
Inhibition of CYP4A reduces hepatic endoplasmic reticulum stress and features of diabetes in mice.
Park, Edmond Changkyun; Kim, Seung Il; Hong, Yeonhee; Hwang, Jeong Won; Cho, Gun-Sik; Cha, Hye-Na; Han, Jin-Kwan; Yun, Chul-Ho; Park, So-Young; Jang, Ik-Soon; Lee, Zee-Won; Choi, Jong-Soon; Kim, Soohyun; Kim, Gun-Hwa.
Afiliação
  • Park EC; Division of Life Science, Korea Basic Science Institute, Daejeon, Republic of Korea.
  • Kim SI; Division of Life Science, Korea Basic Science Institute, Daejeon, Republic of Korea.
  • Hong Y; Division of Life Science, Korea Basic Science Institute, Daejeon, Republic of Korea.
  • Hwang JW; Division of Life Science, Korea Basic Science Institute, Daejeon, Republic of Korea.
  • Cho GS; Division of Molecular and Life Sciences, Pohang University of Science and Technology, Pohang, Kyungbuk, Republic of Korea.
  • Cha HN; Department of Physiology, College of Medicine, Yeungnam University, Daegu, Republic of Korea.
  • Han JK; Division of Molecular and Life Sciences, Pohang University of Science and Technology, Pohang, Kyungbuk, Republic of Korea.
  • Yun CH; School of Biological Sciences and Technology, Chonnam National University, Gwangju, Republic of Korea.
  • Park SY; Department of Physiology, College of Medicine, Yeungnam University, Daegu, Republic of Korea.
  • Jang IS; Division of Life Science, Korea Basic Science Institute, Daejeon, Republic of Korea.
  • Lee ZW; Division of Life Science, Korea Basic Science Institute, Daejeon, Republic of Korea.
  • Choi JS; Division of Life Science, Korea Basic Science Institute, Daejeon, Republic of Korea; Graduate School of Analytical Science and Technology, Chungnam National University, Daejeon, Republic of Korea.
  • Kim S; Biofabula, Daejeon, Republic of Korea.
  • Kim GH; Division of Life Science, Korea Basic Science Institute, Daejeon, Republic of Korea; Department of Functional Genomics, University of Science and Technology, Daejeon, Republic of Korea. Electronic address: genegkh@kbsi.re.kr.
Gastroenterology ; 147(4): 860-9, 2014 Oct.
Article em En | MEDLINE | ID: mdl-24983671
BACKGROUND & AIMS: Endoplasmic reticulum (ER) stress is implicated in the development of type 2 diabetes mellitus. ER stress activates the unfolded protein response pathway, which contributes to apoptosis and insulin resistance. We investigated the roles of cytochrome P450 4A (CYP4A) in the regulation of hepatic ER stress, insulin resistance, and the development of diabetes in mice. METHODS: We used mass spectrometry to compare levels of CYP450 proteins in livers from C57BL/6J and C57BL/KsJ-db/db (db/db) mice; findings were confirmed by immunoblot and real-time PCR analyses. To create a model of diet-induced diabetes, C57BL/6J mice were placed on high-fat diets. Mice were given intraperitoneal injections of an inhibitor (HET0016) or an inducer (clofibrate) of CYP4A, or tail injections of small hairpin RNAs against CYP4A messenger RNA; liver tissues were collected and analyzed for ER stress, insulin resistance, and apoptosis. The effect of HET0016 and CYP4A knockdown also were analyzed in HepG2 cells. RESULTS: Levels of the CYP4A isoforms were highly up-regulated in livers of db/db mice compared with C57BL/6J mice. Inhibition of CYP4A in db/db and mice on high-fat diets reduced features of diabetes such as insulin hypersecretion, hepatic steatosis, and increased glucose tolerance. CYP4A inhibition reduced levels of ER stress, insulin resistance, and apoptosis in the livers of diabetic mice; it also restored hepatic functions. Inversely, induction of CYP4A accelerated ER stress, insulin resistance, and apoptosis in livers of db/db mice. CONCLUSIONS: CYP4A proteins are up-regulated in livers of mice with genetically induced and diet-induced diabetes. Inhibition of CYP4A in mice reduces hepatic ER stress, apoptosis, insulin resistance, and steatosis. Strategies to reduce levels or activity of CYP4A proteins in liver might be developed for treatment of patients with type 2 diabetes.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Citocromo P-450 CYP4A / Diabetes Mellitus / Retículo Endoplasmático / Inibidores Enzimáticos / Estresse do Retículo Endoplasmático / Amidinas / Fígado Idioma: En Ano de publicação: 2014 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Citocromo P-450 CYP4A / Diabetes Mellitus / Retículo Endoplasmático / Inibidores Enzimáticos / Estresse do Retículo Endoplasmático / Amidinas / Fígado Idioma: En Ano de publicação: 2014 Tipo de documento: Article