Your browser doesn't support javascript.
loading
A zinc phthalocyanine based periodic mesoporous organosilica exhibiting charge transfer to fullerenes.
Auras, Florian; Li, Yan; Löbermann, Florian; Döblinger, Markus; Schuster, Jörg; Peter, Laurence M; Trauner, Dirk; Bein, Thomas.
Afiliação
  • Auras F; Department of Chemistry and Center for Nanoscience (CeNS), University of Munich (LMU), Butenandtstraße 5-13, 81377 Munich (Germany).
Chemistry ; 20(46): 14971-5, 2014 Nov 10.
Article em En | MEDLINE | ID: mdl-25293365
ABSTRACT
Periodic mesoporous organosilica (PMO) materials offer a strategy to position molecular semiconductors within a highly defined, porous network. We developed thin films of a new semiconducting zinc phthalocyanine-bridged PMO exhibiting a face-centered orthorhombic pore structure with an average pore diameter of 11 nm. The exceptional degree of order achieved with this PMO enabled us to create thin films consisting of a single porous domain throughout their entire thickness, thus providing maximal accessibility for subsequent incorporation of a complementary phase. The phthalocyanine building blocks inside the pore walls were found to be well-aggregated, enabling electronic conductivity and extending the light-harvesting capabilities to the near IR region. Ordered 3D heterojunctions capable of promoting photo-induced charge transfer were constructed by impregnation of the PMO with a fullerene derivative. When integrated into a photovoltaic device, the infiltrated PMO is capable of producing a high open-circuit voltage and a considerable photocurrent, which represents a significant step towards potential applications of PMOs in optoelectronics.
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2014 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2014 Tipo de documento: Article