Small sample learning of superpixel classifiers for EM segmentation.
Med Image Comput Comput Assist Interv
; 17(Pt 1): 389-97, 2014.
Article
em En
| MEDLINE
| ID: mdl-25333142
Pixel and superpixel classifiers have become essential tools for EM segmentation algorithms. Training these classifiers remains a major bottleneck primarily due to the requirement of completely annotating the dataset which is tedious, error-prone and costly. In this paper, we propose an interactive learning scheme for the superpixel classifier for EM segmentation. Our algorithm is 'active semi-supervised' because it requests the labels of a small number of examples from user and applies label propagation technique to generate these queries. Using only a small set (< 20%) of all datapoints, the proposed algorithm consistently generates a classifier almost as accurate as that estimated from a complete groundtruth. We provide segmentation results on multiple datasets to show the strength of these classifiers.
Buscar no Google
Base de dados:
MEDLINE
Assunto principal:
Algoritmos
/
Reconhecimento Automatizado de Padrão
/
Inteligência Artificial
/
Interpretação de Imagem Assistida por Computador
/
Neuritos
/
Imageamento Tridimensional
/
Microscopia Eletrônica de Transmissão
Idioma:
En
Ano de publicação:
2014
Tipo de documento:
Article