Your browser doesn't support javascript.
loading
The mutational landscapes of genetic and chemical models of Kras-driven lung cancer.
Westcott, Peter M K; Halliwill, Kyle D; To, Minh D; Rashid, Mamunur; Rust, Alistair G; Keane, Thomas M; Delrosario, Reyno; Jen, Kuang-Yu; Gurley, Kay E; Kemp, Christopher J; Fredlund, Erik; Quigley, David A; Adams, David J; Balmain, Allan.
Afiliação
  • Westcott PM; 1] Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, California 94158, USA [2] Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, California 94158, USA.
  • Halliwill KD; 1] Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, California 94158, USA [2] Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, California 94158, USA.
  • To MD; Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, California 94158, USA.
  • Rashid M; Experimental Cancer Genetics, Wellcome Trust Sanger Institute, Hinxton, Cambridge CB10 1HH, UK.
  • Rust AG; Experimental Cancer Genetics, Wellcome Trust Sanger Institute, Hinxton, Cambridge CB10 1HH, UK.
  • Keane TM; Experimental Cancer Genetics, Wellcome Trust Sanger Institute, Hinxton, Cambridge CB10 1HH, UK.
  • Delrosario R; Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, California 94158, USA.
  • Jen KY; Department of Pathology, University of California San Francisco, San Francisco, California 94143, USA.
  • Gurley KE; Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, USA.
  • Kemp CJ; Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, USA.
  • Fredlund E; Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institute, Stockholm 171 21, Sweden.
  • Quigley DA; Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, California 94158, USA.
  • Adams DJ; Experimental Cancer Genetics, Wellcome Trust Sanger Institute, Hinxton, Cambridge CB10 1HH, UK.
  • Balmain A; 1] Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, California 94158, USA [2] Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, California 94158, USA.
Nature ; 517(7535): 489-92, 2015 Jan 22.
Article em En | MEDLINE | ID: mdl-25363767
ABSTRACT
Next-generation sequencing of human tumours has refined our understanding of the mutational processes operative in cancer initiation and progression, yet major questions remain regarding the factors that induce driver mutations and the processes that shape mutation selection during tumorigenesis. Here we performed whole-exome sequencing on adenomas from three mouse models of non-small-cell lung cancer, which were induced either by exposure to carcinogens (methyl-nitrosourea (MNU) and urethane) or by genetic activation of Kras (Kras(LA2)). Although the MNU-induced tumours carried exactly the same initiating mutation in Kras as seen in the Kras(LA2) model (G12D), MNU tumours had an average of 192 non-synonymous, somatic single-nucleotide variants, compared with only six in tumours from the Kras(LA2) model. By contrast, the Kras(LA2) tumours exhibited a significantly higher level of aneuploidy and copy number alterations compared with the carcinogen-induced tumours, suggesting that carcinogen-induced and genetically engineered models lead to tumour development through different routes. The wild-type allele of Kras has been shown to act as a tumour suppressor in mouse models of non-small-cell lung cancer. We demonstrate that urethane-induced tumours from wild-type mice carry mostly (94%) Kras Q61R mutations, whereas those from Kras heterozygous animals carry mostly (92%) Kras Q61L mutations, indicating a major role for germline Kras status in mutation selection during initiation. The exome-wide mutation spectra in carcinogen-induced tumours overwhelmingly display signatures of the initiating carcinogen, while adenocarcinomas acquire additional C > T mutations at CpG sites. These data provide a basis for understanding results from human tumour genome sequencing, which has identified two broad categories of tumours based on the relative frequency of single-nucleotide variations and copy number alterations, and underline the importance of carcinogen models for understanding the complex mutation spectra seen in human cancers.
Assuntos

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Proteína Oncogênica p21(ras) / Transformação Celular Neoplásica / Proteínas Proto-Oncogênicas p21(ras) / Genes ras / Neoplasias Pulmonares / Mutação Idioma: En Ano de publicação: 2015 Tipo de documento: Article País de afiliação: Estados Unidos

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Proteína Oncogênica p21(ras) / Transformação Celular Neoplásica / Proteínas Proto-Oncogênicas p21(ras) / Genes ras / Neoplasias Pulmonares / Mutação Idioma: En Ano de publicação: 2015 Tipo de documento: Article País de afiliação: Estados Unidos