Your browser doesn't support javascript.
loading
Mild conditions for deuteration of primary and secondary arylamines for the synthesis of deuterated optoelectronic organic molecules.
Krause-Heuer, Anwen M; Yepuri, Nageshwar R; Darwish, Tamim A; Holden, Peter J.
Afiliação
  • Krause-Heuer AM; National Deuteration Facility, Bragg Institute, Australian Nuclear Science and Technology Organisation (ANSTO), Locked Bag 2001, Kirrawee DC, NSW 2232, Australia.
  • Yepuri NR; National Deuteration Facility, Bragg Institute, Australian Nuclear Science and Technology Organisation (ANSTO), Locked Bag 2001, Kirrawee DC, NSW 2232, Australia. nageshwar.yepuri@ansto.gov.au.
  • Darwish TA; National Deuteration Facility, Bragg Institute, Australian Nuclear Science and Technology Organisation (ANSTO), Locked Bag 2001, Kirrawee DC, NSW 2232, Australia. tamim.darwish@ansto.gov.au.
  • Holden PJ; National Deuteration Facility, Bragg Institute, Australian Nuclear Science and Technology Organisation (ANSTO), Locked Bag 2001, Kirrawee DC, NSW 2232, Australia. peter.holden@ansto.gov.au.
Molecules ; 19(11): 18604-17, 2014 Nov 13.
Article em En | MEDLINE | ID: mdl-25401402
ABSTRACT
Deuterated arylamines demonstrate great potential for use in optoelectronic devices, but their widespread utility requires a method for large-scale synthesis. The incorporation of these deuterated materials into optoelectronic devices also provides the opportunity for studies of the functioning device using neutron reflectometry based on the difference in the scattering length density between protonated and deuterated compounds. Here we report mild deuteration conditions utilising standard laboratory glassware for the deuteration of diphenylamine, N-phenylnaphthylamine, N-phenyl-o-phenylenediamine and 1-naphthylamine (via H/D exchange in D2O at 80 °C, catalysed by Pt/C and Pd/C). These conditions were not successful in the deuteration of triphenylamine or N,N-dimethylaniline, suggesting that these mild conditions are not suitable for the deuteration of tertiary arylamines, but are likely to be applicable for the deuteration of other primary and secondary arylamines. The deuterated arylamines can then be used for synthesis of larger organic molecules or polymers with optoelectronic applications.
Assuntos

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Fenilenodiaminas / Deutério / Difenilamina Idioma: En Ano de publicação: 2014 Tipo de documento: Article País de afiliação: Austrália

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Fenilenodiaminas / Deutério / Difenilamina Idioma: En Ano de publicação: 2014 Tipo de documento: Article País de afiliação: Austrália