Your browser doesn't support javascript.
loading
Sustained activation of ADP/P2ry12 signaling induces SMC senescence contributing to thoracic aortic aneurysm/dissection.
Zhang, Wen-Mei; Liu, Yan; Li, Tao-Tao; Piao, Chun-Mei; Liu, Ou; Liu, Jun-Ling; Qi, Yong-Fen; Jia, Li-Xin; Du, Jie.
Afiliação
  • Zhang WM; Beijing Anzhen Hospital, Capital Medical University, The Key Laboratory of Remodeling-Related Cardiovascular Diseases, Ministry of Education, Beijing Collaborative Innovation Center for Cardiovascular Disorders, Beijing Institute of Heart, Lung & Blood Vessel Disease, Beijing 100029, China.
  • Liu Y; Beijing Anzhen Hospital, Capital Medical University, The Key Laboratory of Remodeling-Related Cardiovascular Diseases, Ministry of Education, Beijing Collaborative Innovation Center for Cardiovascular Disorders, Beijing Institute of Heart, Lung & Blood Vessel Disease, Beijing 100029, China.
  • Li TT; Beijing Anzhen Hospital, Capital Medical University, The Key Laboratory of Remodeling-Related Cardiovascular Diseases, Ministry of Education, Beijing Collaborative Innovation Center for Cardiovascular Disorders, Beijing Institute of Heart, Lung & Blood Vessel Disease, Beijing 100029, China.
  • Piao CM; Beijing Anzhen Hospital, Capital Medical University, The Key Laboratory of Remodeling-Related Cardiovascular Diseases, Ministry of Education, Beijing Collaborative Innovation Center for Cardiovascular Disorders, Beijing Institute of Heart, Lung & Blood Vessel Disease, Beijing 100029, China.
  • Liu O; Beijing Anzhen Hospital, Capital Medical University, The Key Laboratory of Remodeling-Related Cardiovascular Diseases, Ministry of Education, Beijing Collaborative Innovation Center for Cardiovascular Disorders, Beijing Institute of Heart, Lung & Blood Vessel Disease, Beijing 100029, China.
  • Liu JL; School of Medicine, Shanghai Jiao Tong University, Shanghai 200025, China.
  • Qi YF; Beijing Anzhen Hospital, Capital Medical University, The Key Laboratory of Remodeling-Related Cardiovascular Diseases, Ministry of Education, Beijing Collaborative Innovation Center for Cardiovascular Disorders, Beijing Institute of Heart, Lung & Blood Vessel Disease, Beijing 100029, China.
  • Jia LX; Beijing Anzhen Hospital, Capital Medical University, The Key Laboratory of Remodeling-Related Cardiovascular Diseases, Ministry of Education, Beijing Collaborative Innovation Center for Cardiovascular Disorders, Beijing Institute of Heart, Lung & Blood Vessel Disease, Beijing 100029, China; Emer
  • Du J; Beijing Anzhen Hospital, Capital Medical University, The Key Laboratory of Remodeling-Related Cardiovascular Diseases, Ministry of Education, Beijing Collaborative Innovation Center for Cardiovascular Disorders, Beijing Institute of Heart, Lung & Blood Vessel Disease, Beijing 100029, China. Elec
J Mol Cell Cardiol ; 99: 76-86, 2016 Oct.
Article em En | MEDLINE | ID: mdl-27534720
ABSTRACT
Thoracic aortic aneurysm/dissection (TAAD) is characterized by excessive smooth muscle cell (SMC) loss, extracellular matrix (ECM) degradation and inflammation. However, the mechanism whereby signaling leads to SMC loss is unclear. We used senescence-associated (SA)-ß-gal staining and analysis of expression of senescence-related proteins (p53, p21, p19) to show that excessive mechanical stretch (20% elongation, 3600cycles/h, 48h) induced SMC senescence. SMC senescence was also detected in TAAD specimens from both mice and humans. High-performance liquid chromatography and luciferin-luciferase-based assay revealed that excessive mechanical stretch increased adenosine diphosphate (ADP) release from SMCs both in vivo and in vitro. Elevated ADP induced SMC senescence while genetic knockout of the ADP receptor, P2Y G protein-coupled receptor 12 (P2ry12), in mice protected against SMC senescence and inflammation. Both TAAD formation and rupture were significantly reduced in P2ry12-/- mice. SMCs from P2ry12-/- mice were resistant to senescence induced by excessive mechanical stretch or ADP treatment. Mechanistically, ADP treatment sustained Ras activation, whereas pharmacological inhibition of Ras protected against SMC senescence and reduced TAAD formation. Taken together, excessive mechanical stress may induce a sustained release of ADP and promote SMC senescence via P2ry12-dependent sustained Ras activation, thereby contributing to excessive inflammation and degeneration, which provides insights into TAAD formation and progression.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Transdução de Sinais / Difosfato de Adenosina / Aneurisma da Aorta Torácica / Miócitos de Músculo Liso / Receptores Purinérgicos P2Y12 / Dissecção Aórtica Idioma: En Ano de publicação: 2016 Tipo de documento: Article País de afiliação: China

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Transdução de Sinais / Difosfato de Adenosina / Aneurisma da Aorta Torácica / Miócitos de Músculo Liso / Receptores Purinérgicos P2Y12 / Dissecção Aórtica Idioma: En Ano de publicação: 2016 Tipo de documento: Article País de afiliação: China