Your browser doesn't support javascript.
loading
Monitoring Neoadjuvant Chemotherapy for Breast Cancer by Using Three-dimensional Subharmonic Aided Pressure Estimation and Imaging with US Contrast Agents: Preliminary Experience.
Nam, Kibo; Eisenbrey, John R; Stanczak, Maria; Sridharan, Anush; Berger, Adam C; Avery, Tiffany; Palazzo, Juan P; Forsberg, Flemming.
Afiliação
  • Nam K; From the Departments of Radiology (K.N., J.R.E., M.S., A.S., F.F.), Surgery (A.C.B.), Medical Oncology (T.A.), and Pathology (J.P.P.), Thomas Jefferson University, 763H Main Building, 132 S 10th St, Philadelphia, PA 19107; and Department of Electrical and Computer Engineering, Drexel University, Phi
  • Eisenbrey JR; From the Departments of Radiology (K.N., J.R.E., M.S., A.S., F.F.), Surgery (A.C.B.), Medical Oncology (T.A.), and Pathology (J.P.P.), Thomas Jefferson University, 763H Main Building, 132 S 10th St, Philadelphia, PA 19107; and Department of Electrical and Computer Engineering, Drexel University, Phi
  • Stanczak M; From the Departments of Radiology (K.N., J.R.E., M.S., A.S., F.F.), Surgery (A.C.B.), Medical Oncology (T.A.), and Pathology (J.P.P.), Thomas Jefferson University, 763H Main Building, 132 S 10th St, Philadelphia, PA 19107; and Department of Electrical and Computer Engineering, Drexel University, Phi
  • Sridharan A; From the Departments of Radiology (K.N., J.R.E., M.S., A.S., F.F.), Surgery (A.C.B.), Medical Oncology (T.A.), and Pathology (J.P.P.), Thomas Jefferson University, 763H Main Building, 132 S 10th St, Philadelphia, PA 19107; and Department of Electrical and Computer Engineering, Drexel University, Phi
  • Berger AC; From the Departments of Radiology (K.N., J.R.E., M.S., A.S., F.F.), Surgery (A.C.B.), Medical Oncology (T.A.), and Pathology (J.P.P.), Thomas Jefferson University, 763H Main Building, 132 S 10th St, Philadelphia, PA 19107; and Department of Electrical and Computer Engineering, Drexel University, Phi
  • Avery T; From the Departments of Radiology (K.N., J.R.E., M.S., A.S., F.F.), Surgery (A.C.B.), Medical Oncology (T.A.), and Pathology (J.P.P.), Thomas Jefferson University, 763H Main Building, 132 S 10th St, Philadelphia, PA 19107; and Department of Electrical and Computer Engineering, Drexel University, Phi
  • Palazzo JP; From the Departments of Radiology (K.N., J.R.E., M.S., A.S., F.F.), Surgery (A.C.B.), Medical Oncology (T.A.), and Pathology (J.P.P.), Thomas Jefferson University, 763H Main Building, 132 S 10th St, Philadelphia, PA 19107; and Department of Electrical and Computer Engineering, Drexel University, Phi
  • Forsberg F; From the Departments of Radiology (K.N., J.R.E., M.S., A.S., F.F.), Surgery (A.C.B.), Medical Oncology (T.A.), and Pathology (J.P.P.), Thomas Jefferson University, 763H Main Building, 132 S 10th St, Philadelphia, PA 19107; and Department of Electrical and Computer Engineering, Drexel University, Phi
Radiology ; 285(1): 53-62, 2017 10.
Article em En | MEDLINE | ID: mdl-28467142
Purpose To determine whether three-dimensional subharmonic aided pressure estimation (SHAPE) and subharmonic imaging can help predict the response of breast cancer to neoadjuvant chemotherapy. Materials and Methods In this HIPAA-compliant prospective study, 17 women (age range, 45-70 years) scheduled to undergo neoadjuvant therapy for breast cancer underwent ultrasonography (US) immediately before therapy and at completion of 10%, 60%, and 100% of chemotherapy. All patients provided written informed consent. At each examination, radiofrequency data were collected from SHAPE and subharmonic imaging during infusion of a US contrast agent. Maximum-frequency magnitude and mean intensity were calculated for SHAPE and subharmonic imaging. The signal differences in the tumor relative to the surrounding area were compared with the final treatment response by using the Student t test. Results Four patients left the study, and data from two patients were discarded because of technical problems. Eight patients completed the entire imaging protocol, and an additional three patients dropped out after the imaging session at completion of 10% of chemotherapy as a result of disease progression (these patients were counted as nonresponders). Patients' imaging outcomes consisted of six responders (tumor volume reduction >90%) and five partial responders or nonresponders. The results at completion of 10% of therapy showed that the subharmonic signal increased more in the tumor than in the surrounding area for responders than in partial responders or nonresponders (mean ± standard deviation, 3.23 dB ± 1.41 vs -0.88 dB ± 1.46 [P = .001], respectively, for SHAPE and 1.32 dB ± 0.73 vs -0.82 dB ± 0.88 [P = .002], respectively, for subharmonic imaging). Moreover, three patients whose tumor measurements initially increased were correctly predicted to be responders with SHAPE and subharmonic imaging after completion of 10% of therapy. Conclusion SHAPE and subharmonic imaging have the potential to help predict response to neoadjuvant chemotherapy for breast cancer as early as completion of 10% of therapy, albeit on the basis of a small sample size. © RSNA, 2017 Online supplemental material is available for this article.
Assuntos

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Neoplasias da Mama / Interpretação de Imagem Assistida por Computador / Ultrassonografia Mamária / Meios de Contraste / Imageamento Tridimensional Idioma: En Ano de publicação: 2017 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Neoplasias da Mama / Interpretação de Imagem Assistida por Computador / Ultrassonografia Mamária / Meios de Contraste / Imageamento Tridimensional Idioma: En Ano de publicação: 2017 Tipo de documento: Article