Conformational dynamics are a key factor in signaling mediated by the receiver domain of a sensor histidine kinase from Arabidopsis thaliana.
J Biol Chem
; 292(42): 17525-17540, 2017 10 20.
Article
em En
| MEDLINE
| ID: mdl-28860196
Multistep phosphorelay (MSP) cascades mediate responses to a wide spectrum of stimuli, including plant hormonal signaling, but several aspects of MSP await elucidation. Here, we provide first insight into the key step of MSP-mediated phosphotransfer in a eukaryotic system, the phosphorylation of the receiver domain of the histidine kinase CYTOKININ-INDEPENDENT 1 (CKI1RD) from Arabidopsis thaliana We observed that the crystal structures of free, Mg2+-bound, and beryllofluoridated CKI1RD (a stable analogue of the labile phosphorylated form) were identical and similar to the active state of receiver domains of bacterial response regulators. However, the three CKI1RD variants exhibited different conformational dynamics in solution. NMR studies revealed that Mg2+ binding and beryllofluoridation alter the conformational equilibrium of the ß3-α3 loop close to the phosphorylation site. Mutations that perturbed the conformational behavior of the ß3-α3 loop while keeping the active-site aspartate intact resulted in suppression of CKI1 function. Mechanistically, homology modeling indicated that the ß3-α3 loop directly interacts with the ATP-binding site of the CKI1 histidine kinase domain. The functional relevance of the conformational dynamics observed in the ß3-α3 loop of CKI1RD was supported by a comparison with another A. thaliana histidine kinase, ETR1. In contrast to the highly dynamic ß3-α3 loop of CKI1RD, the corresponding loop of the ETR1 receiver domain (ETR1RD) exhibited little conformational exchange and adopted a different orientation in crystals. Biochemical data indicated that ETR1RD is involved in phosphorylation-independent signaling, implying a direct link between conformational behavior and the ability of eukaryotic receiver domains to participate in MSP.
Palavras-chave
Texto completo:
1
Base de dados:
MEDLINE
Assunto principal:
Proteínas Quinases
/
Arabidopsis
/
Proteínas de Arabidopsis
Idioma:
En
Ano de publicação:
2017
Tipo de documento:
Article