Your browser doesn't support javascript.
loading
Investigation of New Morpholino Oligomers to Increase Survival Motor Neuron Protein Levels in Spinal Muscular Atrophy.
Ramirez, Agnese; Crisafulli, Sebastiano G; Rizzuti, Mafalda; Bresolin, Nereo; Comi, Giacomo P; Corti, Stefania; Nizzardo, Monica.
Afiliação
  • Ramirez A; Dino Ferrari Centre, Neuroscience Section, Department of Pathophysiology and Transplantation (DEPT), University of Milan, Neurology Unit, IRCCS Foundation Ca' Granda Ospedale Maggiore Policlinico, via Francesco Sforza 35, 20122 Milan, Italy. agnese.ramirez@gmail.com.
  • Crisafulli SG; Dino Ferrari Centre, Neuroscience Section, Department of Pathophysiology and Transplantation (DEPT), University of Milan, Neurology Unit, IRCCS Foundation Ca' Granda Ospedale Maggiore Policlinico, via Francesco Sforza 35, 20122 Milan, Italy. sebastiano.crisafulli@gmail.com.
  • Rizzuti M; Dino Ferrari Centre, Neuroscience Section, Department of Pathophysiology and Transplantation (DEPT), University of Milan, Neurology Unit, IRCCS Foundation Ca' Granda Ospedale Maggiore Policlinico, via Francesco Sforza 35, 20122 Milan, Italy. mafalda.rizzuti@gmail.com.
  • Bresolin N; Dino Ferrari Centre, Neuroscience Section, Department of Pathophysiology and Transplantation (DEPT), University of Milan, Neurology Unit, IRCCS Foundation Ca' Granda Ospedale Maggiore Policlinico, via Francesco Sforza 35, 20122 Milan, Italy. nereo.bresolin@unimi.it.
  • Comi GP; Dino Ferrari Centre, Neuroscience Section, Department of Pathophysiology and Transplantation (DEPT), University of Milan, Neurology Unit, IRCCS Foundation Ca' Granda Ospedale Maggiore Policlinico, via Francesco Sforza 35, 20122 Milan, Italy. giacomo.comi@unimi.it.
  • Corti S; Dino Ferrari Centre, Neuroscience Section, Department of Pathophysiology and Transplantation (DEPT), University of Milan, Neurology Unit, IRCCS Foundation Ca' Granda Ospedale Maggiore Policlinico, via Francesco Sforza 35, 20122 Milan, Italy. stefania.corti@unimi.it.
  • Nizzardo M; Dino Ferrari Centre, Neuroscience Section, Department of Pathophysiology and Transplantation (DEPT), University of Milan, Neurology Unit, IRCCS Foundation Ca' Granda Ospedale Maggiore Policlinico, via Francesco Sforza 35, 20122 Milan, Italy. monica.nizzardo1@gmail.com.
Int J Mol Sci ; 19(1)2018 Jan 06.
Article em En | MEDLINE | ID: mdl-29316633
Spinal muscular atrophy (SMA) is an autosomal-recessive childhood motor neuron disease and the main genetic cause of infant mortality. SMA is caused by deletions or mutations in the survival motor neuron 1 (SMN1) gene, which results in SMN protein deficiency. Only one approved drug has recently become available and allows for the correction of aberrant splicing of the paralogous SMN2 gene by antisense oligonucleotides (ASOs), leading to production of full-length SMN protein. We have already demonstrated that a sequence of an ASO variant, Morpholino (MO), is particularly suitable because of its safety and efficacy profile and is both able to increase SMN levels and rescue the murine SMA phenotype. Here, we optimized this strategy by testing the efficacy of four new MO sequences targeting SMN2. Two out of the four new MO sequences showed better efficacy in terms of SMN protein production both in SMA induced pluripotent stem cells (iPSCs) and SMAΔ7 mice. Further, the effect was enhanced when different MO sequences were administered in combination. Our data provide an important insight for MO-based treatment for SMA. Optimization of the target sequence and validation of a treatment based on a combination of different MO sequences could support further pre-clinical studies and the progression toward future clinical trials.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Oligonucleotídeos Antissenso Idioma: En Ano de publicação: 2018 Tipo de documento: Article País de afiliação: Itália

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Oligonucleotídeos Antissenso Idioma: En Ano de publicação: 2018 Tipo de documento: Article País de afiliação: Itália