Your browser doesn't support javascript.
loading
Detection of synchronized burst firing in cultured human induced pluripotent stem cell-derived neurons using a 4-step method.
Matsuda, N; Odawara, A; Katoh, H; Okuyama, N; Yokoi, R; Suzuki, I.
Afiliação
  • Matsuda N; Department of Electronics, Graduate School of Engineering, Tohoku Institute of Technology, 35-1 Yagiyama Kasumicho, Taihaku-ku, Sendai, Miyagi, 982-8577, Japan.
  • Odawara A; Department of Electronics, Graduate School of Engineering, Tohoku Institute of Technology, 35-1 Yagiyama Kasumicho, Taihaku-ku, Sendai, Miyagi, 982-8577, Japan; Advanced Institute for Materials Research, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi, 982-8577, Japan; Japan Society for t
  • Katoh H; Department of Electronics, Graduate School of Engineering, Tohoku Institute of Technology, 35-1 Yagiyama Kasumicho, Taihaku-ku, Sendai, Miyagi, 982-8577, Japan.
  • Okuyama N; Department of Electronics, Graduate School of Engineering, Tohoku Institute of Technology, 35-1 Yagiyama Kasumicho, Taihaku-ku, Sendai, Miyagi, 982-8577, Japan.
  • Yokoi R; Department of Electronics, Graduate School of Engineering, Tohoku Institute of Technology, 35-1 Yagiyama Kasumicho, Taihaku-ku, Sendai, Miyagi, 982-8577, Japan.
  • Suzuki I; Department of Electronics, Graduate School of Engineering, Tohoku Institute of Technology, 35-1 Yagiyama Kasumicho, Taihaku-ku, Sendai, Miyagi, 982-8577, Japan; iPS-non Clinical Experiments for Nervous System (iNCENS) Project, Japan; Consortium for Safety Assessment Using Human iPS Cells (CSAHi), Ja
Biochem Biophys Res Commun ; 497(2): 612-618, 2018 03 04.
Article em En | MEDLINE | ID: mdl-29454965
ABSTRACT
Human induced pluripotent stem cell-derived neurons are promising for use in toxicity evaluations in nonclinical studies. The multi-electrode array (MEA) assay is used in such evaluation systems because it can measure the electrophysiological function of a neural network noninvasively and with high throughput. Synchronized burst firing (SBF) is the main analytic parameter of pharmacological effects in MEA data, but an accurate method for detecting SBFs has not been established. In this study, we present a 4-step method that accurately detects a target SBF confirmed by the researcher's interpretation of a raster plot. This method calculates one set parameter per step, in the following order the inter-spike interval (ISI), the number of spikes in an SBF, the inter-SBF interval, and the number of spikes in an SBF again. We found that the 4-step method is advantageous over the conventional method because it determines the preferable duration of an SBF, accurately distinguishes continuous SBFs, detects weak SBFs, and avoids false detection of SBFs. We found also that pharmacological evaluations involving SBF analysis may differ depending on whether the 4-step or conventional threshold method is used. This 4-step method may contribute to improving the accuracy of drug toxicity and efficacy evaluations using human induced pluripotent stem cell-derived neurons.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Neurogênese / Células-Tronco Pluripotentes Induzidas / Neurônios Idioma: En Ano de publicação: 2018 Tipo de documento: Article País de afiliação: Japão

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Neurogênese / Células-Tronco Pluripotentes Induzidas / Neurônios Idioma: En Ano de publicação: 2018 Tipo de documento: Article País de afiliação: Japão