Your browser doesn't support javascript.
loading
3D nanofabrication by volumetric deposition and controlled shrinkage of patterned scaffolds.
Oran, Daniel; Rodriques, Samuel G; Gao, Ruixuan; Asano, Shoh; Skylar-Scott, Mark A; Chen, Fei; Tillberg, Paul W; Marblestone, Adam H; Boyden, Edward S.
Afiliação
  • Oran D; MIT Media Lab, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
  • Rodriques SG; MIT Media Lab, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
  • Gao R; Department of Physics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
  • Asano S; MIT Media Lab, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
  • Skylar-Scott MA; MIT Media Lab, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
  • Chen F; Pfizer Internal Medicine Research Unit, Cambridge, MA 02139, USA.
  • Tillberg PW; John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA.
  • Marblestone AH; Wyss Institute for Biologically Inspired Engineering, Cambridge, MA 02138, USA.
  • Boyden ES; MIT Media Lab, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
Science ; 362(6420): 1281-1285, 2018 12 14.
Article em En | MEDLINE | ID: mdl-30545883
ABSTRACT
Lithographic nanofabrication is often limited to successive fabrication of two-dimensional (2D) layers. We present a strategy for the direct assembly of 3D nanomaterials consisting of metals, semiconductors, and biomolecules arranged in virtually any 3D geometry. We used hydrogels as scaffolds for volumetric deposition of materials at defined points in space. We then optically patterned these scaffolds in three dimensions, attached one or more functional materials, and then shrank and dehydrated them in a controlled way to achieve nanoscale feature sizes in a solid substrate. We demonstrate that our process, Implosion Fabrication (ImpFab), can directly write highly conductive, 3D silver nanostructures within an acrylic scaffold via volumetric silver deposition. Using ImpFab, we achieve resolutions in the tens of nanometers and complex, non-self-supporting 3D geometries of interest for optical metamaterials.

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2018 Tipo de documento: Article País de afiliação: Estados Unidos

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2018 Tipo de documento: Article País de afiliação: Estados Unidos