Your browser doesn't support javascript.
loading
Machine learning vs addiction therapists: A pilot study predicting alcohol dependence treatment outcome from patient data in behavior therapy with adjunctive medication.
Symons, Martyn; Feeney, Gerald F X; Gallagher, Marcus R; Young, Ross McD; Connor, Jason P.
Afiliação
  • Symons M; Alcohol and Drug Assessment Unit, Princess Alexandra Hospital, Wooloongabba, Brisbane, Queensland 4102, Australia; Discipline of Psychiatry, The University of Queensland, K Floor, Mental Health Centre, Royal Brisbane and Women's Hospital, Herston, Brisbane, Queensland 4029, Australia; Telethon Kids
  • Feeney GFX; Alcohol and Drug Assessment Unit, Princess Alexandra Hospital, Wooloongabba, Brisbane, Queensland 4102, Australia; Centre for Youth Substance Abuse Research, The University of Queensland, Upland Road, St Lucia, Brisbane, Queensland 4072, Australia.
  • Gallagher MR; School of Information Technology and Electrical Engineering, The University of Queensland, Brisbane, Queensland 4072, Australia.
  • Young RM; Alcohol and Drug Assessment Unit, Princess Alexandra Hospital, Wooloongabba, Brisbane, Queensland 4102, Australia; Faculty of Health, Queensland University of Technology, Kelvin Grove, Brisbane, Queensland 4059, Australia.
  • Connor JP; Alcohol and Drug Assessment Unit, Princess Alexandra Hospital, Wooloongabba, Brisbane, Queensland 4102, Australia; Discipline of Psychiatry, The University of Queensland, K Floor, Mental Health Centre, Royal Brisbane and Women's Hospital, Herston, Brisbane, Queensland 4029, Australia; Centre for You
J Subst Abuse Treat ; 99: 156-162, 2019 04.
Article em En | MEDLINE | ID: mdl-30797388
BACKGROUND AND OBJECTIVES: Clinical staff providing addiction treatment predict patient outcome poorly. Prognoses based on linear statistics are rarely replicated. Addiction is a complex non-linear behavior. Incorporating non-linear models, Machine Learning (ML) has successfully predicted treatment outcome when applied in other areas of medicine. Using identical assessment data across the two groups, this study compares the accuracy of ML models versus clinical staff to predict alcohol dependence treatment outcome in behavior therapy using patient data only. METHODS: Machine learning models (n = 28) were constructed ('trained') using demographic and psychometric assessment data from 780 previously treated patients who had undertaken a 12 week, abstinence-based Cognitive Behavioral Therapy program for alcohol dependence. Independent predictions applying assessment data for an additional 50 consecutive patients were obtained from 10 experienced addiction therapists and the 28 trained ML models. The predictive accuracy of the ML models and the addiction therapists was then compared with further investigation of the 10 best models selected by cross-validated accuracy on the training-set. Variables selected as important for prediction by staff and the most accurate ML model were examined. RESULTS: The most accurate ML model (Fuzzy Unordered Rule Induction Algorithm, 74%) was significantly more accurate than the four least accurate clinical staff (51%-40%). However, the robustness of this finding may be limited by the moderate area under the receiver operator curve (AUC = 0.49). There was no significant difference in mean aggregate predictive accuracy between 10 clinical staff (56.1%) and the 28 best models (58.57%). Addiction therapists favoured demographic and consumption variables compared with the ML model using more questionnaire subscales. CONCLUSIONS: The majority of staff and ML models were not more accurate than suggested by chance. However, the best performing prediction models may provide useful adjunctive information to standard clinically available prognostic data to more effectively target treatment approaches in clinical settings.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Terapia Cognitivo-Comportamental / Avaliação de Resultados em Cuidados de Saúde / Comportamento Aditivo / Alcoolismo / Aprendizado de Máquina Idioma: En Ano de publicação: 2019 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Terapia Cognitivo-Comportamental / Avaliação de Resultados em Cuidados de Saúde / Comportamento Aditivo / Alcoolismo / Aprendizado de Máquina Idioma: En Ano de publicação: 2019 Tipo de documento: Article