Your browser doesn't support javascript.
loading
Temporal and differential regulation of KAISO-controlled transcription by phosphorylated and acetylated p53 highlights a crucial regulatory role of apoptosis.
Choi, Seo-Hyun; Koh, Dong-In; Cho, Su-Yeon; Kim, Min-Kyeong; Kim, Kyung-Sup; Hur, Man-Wook.
Afiliação
  • Choi SH; Brain Korea 21 Plus Project for Medical Sciences, Department of Biochemistry and Molecular Biology, Severance Biomedical Research Institute, Yonsei University School of Medicine, 50-1 Yonsei-Ro, SeoDaeMoon-Ku, Seoul 03722, Korea.
  • Koh DI; Brain Korea 21 Plus Project for Medical Sciences, Department of Biochemistry and Molecular Biology, Severance Biomedical Research Institute, Yonsei University School of Medicine, 50-1 Yonsei-Ro, SeoDaeMoon-Ku, Seoul 03722, Korea.
  • Cho SY; Brain Korea 21 Plus Project for Medical Sciences, Department of Biochemistry and Molecular Biology, Severance Biomedical Research Institute, Yonsei University School of Medicine, 50-1 Yonsei-Ro, SeoDaeMoon-Ku, Seoul 03722, Korea.
  • Kim MK; Brain Korea 21 Plus Project for Medical Sciences, Department of Biochemistry and Molecular Biology, Severance Biomedical Research Institute, Yonsei University School of Medicine, 50-1 Yonsei-Ro, SeoDaeMoon-Ku, Seoul 03722, Korea.
  • Kim KS; Brain Korea 21 Plus Project for Medical Sciences, Department of Biochemistry and Molecular Biology, Severance Biomedical Research Institute, Yonsei University School of Medicine, 50-1 Yonsei-Ro, SeoDaeMoon-Ku, Seoul 03722, Korea.
  • Hur MW; Brain Korea 21 Plus Project for Medical Sciences, Department of Biochemistry and Molecular Biology, Severance Biomedical Research Institute, Yonsei University School of Medicine, 50-1 Yonsei-Ro, SeoDaeMoon-Ku, Seoul 03722, Korea. Electronic address: mwhur2@yuhs.ac.
J Biol Chem ; 294(35): 12957-12974, 2019 08 30.
Article em En | MEDLINE | ID: mdl-31296660
Transcriptional regulator KAISO plays a critical role in cell cycle arrest and apoptosis through modulation of p53 acetylation by histone acetyltransferase p300. KAISO potently stimulates apoptosis in cells expressing WT p53, but not in p53-mutant or p53-null cells. Here, we investigated how KAISO transcription is regulated by p53, finding four potential p53-binding sites (p53-responsive DNA elements; p53REs) located in a distal 5'-upstream regulatory element, intron 1, exon 2 coding sequence, and a 3'-UTR region. Transient transcription assays of pG5-p53RE-Luc constructs with various p53REs revealed that p53 activates KAISO (ZBTB33) transcription by acting on p53RE1 (-4326 to -4227) of the 5'-upstream region and on p53RE3 (+2929 to +2959) of the exon 2 coding region during early DNA damage responses (DDRs). ChIP and oligonucleotide pulldown assays further disclosed that p53 binds to the p53RE1 and p53RE3 sites. Moreover, ataxia telangiectasia mutated (ATM) or ATM-Rad3-related (ATR) kinase-mediated p53 phosphorylation at Ser-15 or Ser-37 residues activated KAISO transcription by binding its p53RE1 or p53RE3 sites during early DDR. p53RE1 uniquely contained three p53-binding half-sites, a structural feature important for transcriptional activation by phosphorylated p53 Ser-15·Ser-37. During the later DDR phase, a KAISO-mediated acetylated p53 form (represented by a p53QRQ acetyl-mimic) robustly activated transcription by acting on p53RE1 in which this structural feature is not significant, but it provided sufficient KAISO levels to confer a p53 "apoptotic code." These results suggest that the critical apoptosis regulator KAISO is a p53 target gene that is differently regulated by phosphorylated p53 or acetylated p53, depending on DDR stage.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Fatores de Transcrição / Ativação Transcricional / Proteína Supressora de Tumor p53 / Apoptose Idioma: En Ano de publicação: 2019 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Fatores de Transcrição / Ativação Transcricional / Proteína Supressora de Tumor p53 / Apoptose Idioma: En Ano de publicação: 2019 Tipo de documento: Article