Your browser doesn't support javascript.
loading
Modular and tunable biological feedback control using a de novo protein switch.
Ng, Andrew H; Nguyen, Taylor H; Gómez-Schiavon, Mariana; Dods, Galen; Langan, Robert A; Boyken, Scott E; Samson, Jennifer A; Waldburger, Lucas M; Dueber, John E; Baker, David; El-Samad, Hana.
Afiliação
  • Ng AH; Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, USA.
  • Nguyen TH; Department of Bioengineering, University of California, Berkeley, Berkeley, CA, USA.
  • Gómez-Schiavon M; The UC Berkeley-UCSF Graduate Program in Bioengineering, UC Berkeley, Berkeley, CA, USA.
  • Dods G; Cell Design Initiative, University of California, San Francisco, CA, USA.
  • Langan RA; Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, USA.
  • Boyken SE; Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, USA.
  • Samson JA; Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, USA.
  • Waldburger LM; Department of Biochemistry, University of Washington, Seattle, WA, USA.
  • Dueber JE; Institute for Protein Design, University of Washington, Seattle, WA, USA.
  • Baker D; Graduate Program in Biological Physics, Structure, and Design, University of Washington, Seattle, WA, USA.
  • El-Samad H; Department of Biochemistry, University of Washington, Seattle, WA, USA.
Nature ; 572(7768): 265-269, 2019 08.
Article em En | MEDLINE | ID: mdl-31341280
ABSTRACT
De novo-designed proteins1-3 hold great promise as building blocks for synthetic circuits, and can complement the use of engineered variants of natural proteins4-7. One such designer protein-degronLOCKR, which is based on 'latching orthogonal cage-key proteins' (LOCKR) technology8-is a switch that degrades a protein of interest in vivo upon induction by a genetically encoded small peptide. Here we leverage the plug-and-play nature of degronLOCKR to implement feedback control of endogenous signalling pathways and synthetic gene circuits. We first generate synthetic negative and positive feedback in the yeast mating pathway by fusing degronLOCKR to endogenous signalling molecules, illustrating the ease with which this strategy can be used to rewire complex endogenous pathways. We next evaluate feedback control mediated by degronLOCKR on a synthetic gene circuit9, to quantify the feedback capabilities and operational range of the feedback control circuit. The designed nature of degronLOCKR proteins enables simple and rational modifications to tune feedback behaviour in both the synthetic circuit and the mating pathway. The ability to engineer feedback control into living cells represents an important milestone in achieving the full potential of synthetic biology10,11,12. More broadly, this work demonstrates the large and untapped potential of de novo design of proteins for generating tools that implement complex synthetic functionalities in cells for biotechnological and therapeutic applications.
Assuntos

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Saccharomyces cerevisiae / Transdução de Sinais / Proteínas de Saccharomyces cerevisiae / Retroalimentação Fisiológica / Genes Fúngicos Tipo Acasalamento / Redes Reguladoras de Genes / Biologia Sintética Idioma: En Ano de publicação: 2019 Tipo de documento: Article País de afiliação: Estados Unidos

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Saccharomyces cerevisiae / Transdução de Sinais / Proteínas de Saccharomyces cerevisiae / Retroalimentação Fisiológica / Genes Fúngicos Tipo Acasalamento / Redes Reguladoras de Genes / Biologia Sintética Idioma: En Ano de publicação: 2019 Tipo de documento: Article País de afiliação: Estados Unidos