Your browser doesn't support javascript.
loading
Modelling the ultra-strongly coupled spin-boson model with unphysical modes.
Lambert, Neill; Ahmed, Shahnawaz; Cirio, Mauro; Nori, Franco.
Afiliação
  • Lambert N; Theoretical Quantum Physics Laboratory, RIKEN Cluster for Pioneering Research, Wako-shi, Saitama, 351-0198, Japan. nwlambert@gmail.com.
  • Ahmed S; Theoretical Quantum Physics Laboratory, RIKEN Cluster for Pioneering Research, Wako-shi, Saitama, 351-0198, Japan.
  • Cirio M; Wallenberg Centre for Quantum Technology, Department of Microtechnology and Nanoscience, Chalmers University of Technology, 412 96, Gothenburg, Sweden.
  • Nori F; Graduate School of China Academy of Engineering Physics, Haidian District, Beijing, 100193, China. cirio.mauro@gmail.com.
Nat Commun ; 10(1): 3721, 2019 Aug 19.
Article em En | MEDLINE | ID: mdl-31427583
A quantum system weakly coupled to a zero-temperature environment will relax, via spontaneous emission, to its ground-state. However, when the coupling to the environment is ultra-strong the ground-state is expected to become dressed with virtual excitations. This regime is difficult to capture with some traditional methods because of the explosion in the number of Matsubara frequencies, i.e., exponential terms in the free-bath correlation function. To access this regime we generalize both the hierarchical equations of motion and pseudomode methods, taking into account this explosion using only a biexponential fitting function. We compare these methods to the reaction coordinate mapping, which helps show how these sometimes neglected Matsubara terms are important to regulate detailed balance and prevent the unphysical emission of virtual excitations. For the pseudomode method, we present a general proof of validity for the use of superficially unphysical Matsubara-modes, which mirror the mathematical essence of the Matsubara frequencies.

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2019 Tipo de documento: Article País de afiliação: Japão

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2019 Tipo de documento: Article País de afiliação: Japão