Single-nucleotide control of tRNA folding cooperativity under near-cellular conditions.
Proc Natl Acad Sci U S A
; 116(46): 23075-23082, 2019 11 12.
Article
em En
| MEDLINE
| ID: mdl-31666318
RNA folding is often studied by renaturing full-length RNA in vitro and tracking folding transitions. However, the intracellular transcript folds as it emerges from the RNA polymerase. Here, we investigate the folding pathways and stability of numerous late-transcriptional intermediates of yeast and Escherichia coli transfer RNAs (tRNAs). Transfer RNA is a highly regulated functional RNA that undergoes multiple steps of posttranscriptional processing and is found in very different lengths during its lifetime in the cell. The precursor transcript is extended on both the 5' and 3' ends of the cloverleaf core, and these extensions get trimmed before addition of the 3'-CCA and aminoacylation. We studied the thermodynamics and structures of the precursor tRNA and of late-transcriptional intermediates of the cloverleaf structure. We examined RNA folding at both the secondary and tertiary structural levels using multiple biochemical and biophysical approaches. Our findings suggest that perhaps nature has selected for a single-base addition to control folding to the functional 3D structure. In near-cellular conditions, yeast tRNAPhe and E. coli tRNAAla transcripts fold in a single, cooperative transition only when nearly all of the nucleotides in the cloverleaf are transcribed by indirectly enhancing folding cooperativity. Furthermore, native extensions on the 5' and 3' ends do not interfere with cooperative core folding. This highly controlled cooperative folding has implications for recognition of tRNA by processing and modification enzymes and quality control of tRNA in cells.
Palavras-chave
Texto completo:
1
Base de dados:
MEDLINE
Assunto principal:
Leveduras
/
RNA de Transferência
/
Escherichia coli
/
Nucleotídeos
Idioma:
En
Ano de publicação:
2019
Tipo de documento:
Article