Tenascin-C promotes acute kidney injury to chronic kidney disease progression by impairing tubular integrity via αvß6 integrin signaling.
Kidney Int
; 97(5): 1017-1031, 2020 05.
Article
em En
| MEDLINE
| ID: mdl-32245660
Tenascin-C is an extracellular matrix glycoprotein that plays a critical role in kidney fibrosis by orchestrating a fibrogenic niche. Here, we demonstrate that tenascin-C is a biomarker and a mediator of kidney fibrogenesis by impairing tubular integrity. Tenascin-C was found to be increased in kidney biopsies from patients with chronic kidney disease (CKD). In a cohort of 225 patients with CKD, the urinary tenascin-C level was markedly elevated, compared to 39 healthy individuals. Moreover, the level of urinary tenascin-C in CKD was correlated with the severity of kidney dysfunction and fibrosis. In mouse model of acute kidney injury-to-CKD induced by ischemia/reperfusion, depletion of tenascin-C preserved tubular integrity and ameliorated renal fibrotic lesions. In vitro, tenascin-C impaired tubular cell integrity by inducing partial epithelial-mesenchymal transition. Using decellularized kidney tissue scaffolds, we found that tenascin-C-enriched scaffolds facilitated tubular epithelial-mesenchymal transition ex vivo. Mechanistically, tenascin-C specifically induced integrins αvß6 in tubular cells and activated focal adhesion kinase (FAK). Blocking αvß6 integrins or inhibition of FAK restored tubular integrity by repressing epithelial-mesenchymal transition and alleviated kidney fibrosis. Thus, our studies underscore that tenascin-C is a noninvasive biomarker of kidney fibrogenesis and a pathogenic mediator that impairs tubular integrity. Hence, blockade of the tenascin-C/αvß6 integrin/FAK signal cascade may be a novel strategy for therapeutic intervention of kidney fibrosis.
Palavras-chave
Texto completo:
1
Base de dados:
MEDLINE
Assunto principal:
Insuficiência Renal Crônica
/
Injúria Renal Aguda
Idioma:
En
Ano de publicação:
2020
Tipo de documento:
Article
País de afiliação:
China