Your browser doesn't support javascript.
loading
Transcriptomic signatures across human tissues identify functional rare genetic variation.
Ferraro, Nicole M; Strober, Benjamin J; Einson, Jonah; Abell, Nathan S; Aguet, Francois; Barbeira, Alvaro N; Brandt, Margot; Bucan, Maja; Castel, Stephane E; Davis, Joe R; Greenwald, Emily; Hess, Gaelen T; Hilliard, Austin T; Kember, Rachel L; Kotis, Bence; Park, YoSon; Peloso, Gina; Ramdas, Shweta; Scott, Alexandra J; Smail, Craig; Tsang, Emily K; Zekavat, Seyedeh M; Ziosi, Marcello; Ardlie, Kristin G; Assimes, Themistocles L; Bassik, Michael C; Brown, Christopher D; Correa, Adolfo; Hall, Ira; Im, Hae Kyung; Li, Xin; Natarajan, Pradeep; Lappalainen, Tuuli; Mohammadi, Pejman; Montgomery, Stephen B; Battle, Alexis.
Afiliação
  • Ferraro NM; Biomedical Informatics Training Program, Stanford University, Stanford, CA, USA.
  • Strober BJ; Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA.
  • Einson J; Department of Biomedical Informatics, Columbia University, New York, NY, USA.
  • Abell NS; New York Genome Center, New York, NY, USA.
  • Aguet F; Department of Genetics, Stanford University, Stanford, CA, USA.
  • Barbeira AN; Broad Institute of MIT and Harvard, Cambridge, MA, USA.
  • Brandt M; Section of Genetic Medicine, Department of Medicine, The University of Chicago, Chicago, IL, USA.
  • Bucan M; New York Genome Center, New York, NY, USA.
  • Castel SE; Department of Systems Biology, Columbia University, New York, NY, USA.
  • Davis JR; Department of Genetics, University of Pennsylvania, Philadelphia, PA, USA.
  • Greenwald E; New York Genome Center, New York, NY, USA.
  • Hess GT; Department of Systems Biology, Columbia University, New York, NY, USA.
  • Hilliard AT; Department of Pathology, Stanford University, Stanford, CA, USA.
  • Kember RL; Department of Genetics, Stanford University, Stanford, CA, USA.
  • Kotis B; Department of Genetics, Stanford University, Stanford, CA, USA.
  • Park Y; Palo Alto Veterans Institute for Research, Palo Alto Epidemiology Research and Information Center for Genomics, VA Palo Alto Health Care System, Palo Alto, CA, USA.
  • Peloso G; Department of Genetics, University of Pennsylvania, Philadelphia, PA, USA.
  • Ramdas S; Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA.
  • Scott AJ; Department of Systems Pharmacology and Translational Medicine, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA.
  • Smail C; Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA.
  • Tsang EK; Department of Genetics, University of Pennsylvania, Philadelphia, PA, USA.
  • Zekavat SM; McDonnell Genome Institute, Washington University School of Medicine, St. Louis, MO, USA.
  • Ziosi M; Biomedical Informatics Training Program, Stanford University, Stanford, CA, USA.
  • Aradhana; Department of Pathology, Stanford University, Stanford, CA, USA.
  • Ardlie KG; New York Genome Center, New York, NY, USA.
  • Assimes TL; Department of Genetics, Stanford University, Stanford, CA, USA.
  • Brown CD; Broad Institute of MIT and Harvard, Cambridge, MA, USA.
  • Correa A; Palo Alto Veterans Institute for Research, Palo Alto Epidemiology Research and Information Center for Genomics, VA Palo Alto Health Care System, Palo Alto, CA, USA.
  • Hall I; Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA.
  • Im HK; Department of Genetics, Stanford University, Stanford, CA, USA.
  • Li X; Department of Genetics, University of Pennsylvania, Philadelphia, PA, USA.
  • Natarajan P; University of Mississippi Medical Center, Jackson, MS, USA.
  • Lappalainen T; Section of Genetic Medicine, Department of Medicine, The University of Chicago, Chicago, IL, USA.
  • Mohammadi P; Department of Pathology, Stanford University, Stanford, CA, USA.
  • Montgomery SB; Shanghai Institutes for Biological Sciences, CAS-MPG Partner Institute for Computational Biology, Chinese Academy of Sciences, Shanghai, China.
  • Battle A; Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA, USA.
Science ; 369(6509)2020 09 11.
Article em En | MEDLINE | ID: mdl-32913073
Rare genetic variants are abundant across the human genome, and identifying their function and phenotypic impact is a major challenge. Measuring aberrant gene expression has aided in identifying functional, large-effect rare variants (RVs). Here, we expanded detection of genetically driven transcriptome abnormalities by analyzing gene expression, allele-specific expression, and alternative splicing from multitissue RNA-sequencing data, and demonstrate that each signal informs unique classes of RVs. We developed Watershed, a probabilistic model that integrates multiple genomic and transcriptomic signals to predict variant function, validated these predictions in additional cohorts and through experimental assays, and used them to assess RVs in the UK Biobank, the Million Veterans Program, and the Jackson Heart Study. Our results link thousands of RVs to diverse molecular effects and provide evidence to associate RVs affecting the transcriptome with human traits.
Assuntos

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Variação Genética / Genoma Humano / Herança Multifatorial / Transcriptoma Idioma: En Ano de publicação: 2020 Tipo de documento: Article País de afiliação: Estados Unidos

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Variação Genética / Genoma Humano / Herança Multifatorial / Transcriptoma Idioma: En Ano de publicação: 2020 Tipo de documento: Article País de afiliação: Estados Unidos