17ß-Oestradiol Attenuates the Photoreceptor Apoptosis in Mice with Retinitis Pigmentosa by Regulating N-myc Downstream Regulated Gene 2 Expression.
Neuroscience
; 452: 280-294, 2021 01 01.
Article
em En
| MEDLINE
| ID: mdl-33246060
Retinitis pigmentosa (RP) is a heterogeneous group of retinal degenerative diseases in which the final pathological feature is photoreceptor cell apoptosis. Currently, the pathogenesis of RP remains poorly understood and therapeutics are ineffective. 17ß-Oestradiol (ßE2) is universally acknowledged as a neuroprotective factor in neurodegenerative diseases and has manifested neuroprotective effects in a light-induced retinal degeneration model. Recently, we identified N-myc downstream regulated gene 2 (NDRG2) suppression as a molecular marker of mouse retinal photoreceptor-specific cell death. ßE2 has also been reported to regulate NDRG2 in salivary acinar cells. Therefore, in this study, we investigated whether ßE2 plays a protective role in RP and regulates NDRG2 in photoreceptor cells. To this end, we generated RP models and observed that ßE2 not only reduced the apoptosis of photoreceptor cells, but also restored the level of NDRG2 expression in RP models. Then, we showed that siNDRG2 inhibits the anti-apoptotic effect of ßE2 on photoreceptor cells in a cellular RP model. Subsequently, we used a classic oestrogen receptor (ER) antagonist to attenuate the effects of ßE2, suggesting that ßE2 exerted its effects on RP models via the classic ERs. In addition, we performed a bioinformatics analysis, and the results indicated that the reported oestrogen response element (ERE) sequence is present in the promoter region of the mouse NDRG2 gene. Overall, our results suggest that ßE2 attenuated the apoptosis of photoreceptor cells in RP models by maintaining NDRG2 expression via a classic ER-mediated mechanism.
Palavras-chave
Texto completo:
1
Base de dados:
MEDLINE
Assunto principal:
Degeneração Retiniana
/
Retinose Pigmentar
Idioma:
En
Ano de publicação:
2021
Tipo de documento:
Article
País de afiliação:
China