Your browser doesn't support javascript.
loading
TREM2 alters the phagocytic, apoptotic and inflammatory response to Aß42 in HMC3 cells.
Akhter, Rumana; Shao, Yvonne; Formica, Shane; Khrestian, Maria; Bekris, Lynn M.
Afiliação
  • Akhter R; Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH, USA.
  • Shao Y; Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH, USA.
  • Formica S; Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH, USA.
  • Khrestian M; Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH, USA.
  • Bekris LM; Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH, USA. Electronic address: bekrisl@ccf.org.
Mol Immunol ; 131: 171-179, 2021 03.
Article em En | MEDLINE | ID: mdl-33461764
ABSTRACT
Alzheimer's disease (AD) is characterized by the accumulation in the brain of extracellular amyloid ß (Aß) plaques as well as intraneuronal inclusions (neurofibrillary tangles) consisting of total tau and phosphorylated tau. Also present are dystrophic neurites, loss of synapses, neuronal death, and gliosis. AD genetic studies have highlighted the importance of inflammation in this disease by identifying several risk associated immune response genes, including TREM2. TREM2 has been strongly implicated in basic microglia function including, phagocytosis, apoptosis, and the inflammatory response to Aß in mouse brain and primary cells. These studies show that microglia are key players in the response to Aß and in the accumulation of AD pathology. However, details are still missing about which apoptotic or inflammatory factors rely on TREM2 in their response to Aß, especially in human cell lines. Given these previous findings our hypothesis is that TREM2 influences the response to Aß toxicity by enhancing phagocytosis and inhibiting both the BCL-2 family of apoptotic proteins and pro-inflammatory cytokines. Aß42 treatment of the human microglial cell line, HMC3 cells, was performed and TREM2 was overexpressed or silenced and the phagocytosis, apoptosis and inflammatory response were evaluated. Results indicate that a robust phagocytic response to Aß after 24 h requires TREM2 in HMC3 cells. Also, TREM2 inhibits Aß induced apoptosis by activating the Mcl-1/Bim complex. TREM2 is involved in activation of IP-10, MIP-1a, and IL-8, while it inhibits FGF-2, VEGF and GRO. Taken together, TREM2 plays a role in enhancing the microglial functional response to Aß toxicity in HMC3 cells. This novel information suggests that therapeutic strategies that seek to activate TREM2 may not only enhance phagocytosis and inhibit apoptosis, but may also inhibit beneficial inflammatory factors, emphasizing the need to define TREM2-related inflammatory activity in not only mouse models of AD, but also in human AD.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Fagócitos / Glicoproteínas de Membrana / Receptores Imunológicos / Peptídeos beta-Amiloides / Apoptose / Inflamação Idioma: En Ano de publicação: 2021 Tipo de documento: Article País de afiliação: Estados Unidos

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Fagócitos / Glicoproteínas de Membrana / Receptores Imunológicos / Peptídeos beta-Amiloides / Apoptose / Inflamação Idioma: En Ano de publicação: 2021 Tipo de documento: Article País de afiliação: Estados Unidos