Structure-Activity Relationship Study of Dexrazoxane Analogues Reveals ICRF-193 as the Most Potent Bisdioxopiperazine against Anthracycline Toxicity to Cardiomyocytes Due to Its Strong Topoisomerase IIß Interactions.
J Med Chem
; 64(7): 3997-4019, 2021 04 08.
Article
em En
| MEDLINE
| ID: mdl-33750129
Cardioprotective activity of dexrazoxane (ICRF-187), the only clinically approved drug against anthracycline-induced cardiotoxicity, has traditionally been attributed to its iron-chelating metabolite. However, recent experimental evidence suggested that the inhibition and/or depletion of topoisomerase IIß (TOP2B) by dexrazoxane could be cardioprotective. Hence, we evaluated a series of dexrazoxane analogues and found that their cardioprotective activity strongly correlated with their interaction with TOP2B in cardiomyocytes, but was independent of their iron chelation ability. Very tight structure-activity relationships were demonstrated on stereoisomeric forms of 4,4'-(butane-2,3-diyl)bis(piperazine-2,6-dione). In contrast to its rac-form 12, meso-derivative 11 (ICRF-193) showed a favorable binding mode to topoisomerase II in silico, inhibited and depleted TOP2B in cardiomyocytes more efficiently than dexrazoxane, and showed the highest cardioprotective efficiency. Importantly, the observed ICRF-193 cardioprotection did not interfere with the antiproliferative activity of anthracycline. Hence, this study identifies ICRF-193 as the new lead compound in the development of efficient cardioprotective agents.
Texto completo:
1
Base de dados:
MEDLINE
Assunto principal:
Piperazinas
/
Cardiotônicos
/
Inibidores da Topoisomerase II
/
Cardiotoxicidade
Idioma:
En
Ano de publicação:
2021
Tipo de documento:
Article
País de afiliação:
República Tcheca