Your browser doesn't support javascript.
loading
The semiparametric accelerated trend-renewal process for recurrent event data.
Su, Chien-Lin; Steele, Russell J; Shrier, Ian.
Afiliação
  • Su CL; Department of Mathematics and Statistics, McGill University, Montréal, QC, Canada. chien-lin.su@mail.mcgill.ca.
  • Steele RJ; Department of Epidemiology, Biostatistics and Occupational Health, McGill University, Montréal, QC, Canada. chien-lin.su@mail.mcgill.ca.
  • Shrier I; Department of Mathematics and Statistics, McGill University, Montréal, QC, Canada.
Lifetime Data Anal ; 27(3): 357-387, 2021 07.
Article em En | MEDLINE | ID: mdl-33768490
Recurrent event data arise in many biomedical longitudinal studies when health-related events can occur repeatedly for each subject during the follow-up time. In this article, we examine the gap times between recurrent events. We propose a new semiparametric accelerated gap time model based on the trend-renewal process which contains trend and renewal components that allow for the intensity function to vary between successive events. We use the Buckley-James imputation approach to deal with censored transformed gap times. The proposed estimators are shown to be consistent and asymptotically normal. Model diagnostic plots of residuals and a method for predicting number of recurrent events given specified covariates and follow-up time are also presented. Simulation studies are conducted to assess finite sample performance of the proposed method. The proposed technique is demonstrated through an application to two real data sets.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Estudos Longitudinais Idioma: En Ano de publicação: 2021 Tipo de documento: Article País de afiliação: Canadá

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Estudos Longitudinais Idioma: En Ano de publicação: 2021 Tipo de documento: Article País de afiliação: Canadá