Design and Simulation Investigation of Si3N4 Photonics Circuits for Wideband On-Chip Optical Gas Sensing around 2 µm Optical Wavelength.
Sensors (Basel)
; 21(7)2021 Apr 03.
Article
em En
| MEDLINE
| ID: mdl-33916817
We theoretically explore the potential of Si3N4 on SiO2 waveguide platform toward a wideband spectroscopic detection around the optical wavelength of 2 µm. The design of Si3N4 on SiO2 waveguide architectures consisting of a Si3N4 slot waveguide for a wideband on-chip spectroscopic sensing around 2 µm, and a Si3N4 multi-mode interferometer (MMI)-based coupler for light coupling from classical strip waveguide into the identified Si3N4 slot waveguides over a wide spectral range are investigated. We found that a Si3N4 on SiO2 slot waveguide structure can be designed for using as optical interaction part over a spectral range of interest, and the MMI structure can be used to enable broadband optical coupling from a strip to the slot waveguide for wideband multi-gas on-chip spectroscopic sensing. Reasons for the operating spectral range of the system are discussed.
Texto completo:
1
Base de dados:
MEDLINE
Idioma:
En
Ano de publicação:
2021
Tipo de documento:
Article
País de afiliação:
França