Your browser doesn't support javascript.
loading
Dynamic alteration in miRNA and mRNA expression profiles at different stages of chronic arsenic exposure-induced carcinogenesis in a human cell culture model of skin cancer.
Banerjee, Mayukh; Ferragut Cardoso, Ana; Al-Eryani, Laila; Pan, Jianmin; Kalbfleisch, Theodore S; Srivastava, Sudhir; Rai, Shesh N; States, J Christopher.
Afiliação
  • Banerjee M; Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY, USA.
  • Ferragut Cardoso A; Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY, USA.
  • Al-Eryani L; Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY, USA.
  • Pan J; Knowledge Management and Special Projects Branch, Center for Strategic Scientific Initiatives (HNC1L), National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA.
  • Kalbfleisch TS; Biostatistics and Bioinformatics Facility, James Graham Brown Cancer Center, University of Louisville, Louisville, KY, USA.
  • Srivastava S; Biostatistics and Informatics Facility, Center for Integrative Environmental Health Sciences, University of Louisville, Louisville, KY, USA.
  • Rai SN; Department of Biochemistry and Molecular Genetics, University of Louisville, Louisville, KY, USA.
  • States JC; Gluck Equine Research Center, University of Kentucky, Lexington, KY, USA.
Arch Toxicol ; 95(7): 2351-2365, 2021 07.
Article em En | MEDLINE | ID: mdl-34032870
ABSTRACT
Chronic arsenic exposure causes skin cancer, although the underlying molecular mechanisms are not well defined. Altered microRNA and mRNA expression likely play a pivotal role in carcinogenesis. Changes in genome-wide differential expression of miRNA and mRNA at 3 strategic time points upon chronic sodium arsenite (As3+) exposure were investigated in a well-validated HaCaT cell line model of arsenic-induced cutaneous squamous cell carcinoma (cSCC). Quadruplicate independent HaCaT cell cultures were exposed to 0 or 100 nM As3+ for up to 28-weeks (wk). Cell growth was monitored throughout the course of exposure and epithelial-mesenchymal transition (EMT) was examined employing immunoblot. Differentially expressed miRNA and mRNA profiles were generated at 7, 19, and 28-wk by RNA-seq, followed by identification of differentially expressed mRNA targets of differentially expressed miRNAs through expression pairing at each time point. Pathway analyses were performed for total differentially expressed mRNAs and for the miRNA targeted mRNAs at each time point. RNA-seq predictions were validated by immunoblot of selected target proteins. While the As3+-exposed cells grew slower initially, growth was equal to that of unexposed cells by 19-wk (transformation initiation), and exposed cells subsequently grew faster than passage-matched unexposed cells. As3+-exposed cells had undergone EMT at 28-wk. Pathway analyses demonstrate dysregulation of carcinogenesis-related pathways and networks in a complex coordinated manner at each time point. Immunoblot data largely corroborate RNA-seq predictions in the endoplasmic reticulum stress (ER stress) pathway. This study provides a detailed molecular picture of changes occurring during the arsenic-induced transformation of human keratinocytes.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Arsênio / Neoplasias Cutâneas / Carcinoma de Células Escamosas / MicroRNAs Idioma: En Ano de publicação: 2021 Tipo de documento: Article País de afiliação: Estados Unidos

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Arsênio / Neoplasias Cutâneas / Carcinoma de Células Escamosas / MicroRNAs Idioma: En Ano de publicação: 2021 Tipo de documento: Article País de afiliação: Estados Unidos