Your browser doesn't support javascript.
loading
Contrasting genetic signal of recolonization after rainforest fragmentation in African trees with different dispersal abilities.
Piñeiro, Rosalía; Hardy, Olivier J; Tovar, Carolina; Gopalakrishnan, Shyam; Garrett Vieira, Filipe; Gilbert, M Thomas P.
Afiliação
  • Piñeiro R; The GLOBE Institute, University of Copenhagen, 1353 Copenhagen, Denmark; rosalia.pineiro@gmail.com.
  • Hardy OJ; Unit of Evolutionary Biology and Ecology, Faculté des Sciences, Université Libre de Bruxelles, B-1050 Brussels, Belgium.
  • Tovar C; Geography, College of Life and Environmental Sciences, CLES, University of Exeter, Exeter EX4 4RJ, United Kingdom.
  • Gopalakrishnan S; Unit of Evolutionary Biology and Ecology, Faculté des Sciences, Université Libre de Bruxelles, B-1050 Brussels, Belgium.
  • Garrett Vieira F; Jodrell Laboratory, Royal Botanic Gardens, Kew, Richmond TW9 3AB, United Kingdom.
  • Gilbert MTP; The GLOBE Institute, University of Copenhagen, 1353 Copenhagen, Denmark.
Proc Natl Acad Sci U S A ; 118(27)2021 07 06.
Article em En | MEDLINE | ID: mdl-34210795
ABSTRACT
Although today the forest cover is continuous in Central Africa, this may have not always been the case, as the scarce fossil record in this region suggests that arid conditions might have significantly reduced tree density during the ice ages. Our aim was to investigate whether the dry ice age periods left a genetic signature on tree species that can be used to infer the date of the past fragmentation of the rainforest. We sequenced reduced representation libraries of 182 samples representing five widespread legume trees and seven outgroups. Phylogenetic analyses identified an early divergent lineage for all species in West Africa (Upper Guinea) and two clades in Central Africa Lower Guinea-North and Lower Guinea-South. As the structure separating the Northern and Southern clades-congruent across species-cannot be explained by geographic barriers, we tested other hypotheses with demographic model testing using δαδι. The best estimates indicate that the two clades split between the Upper Pliocene and the Pleistocene, a date compatible with forest fragmentation driven by ice age climatic oscillations. Furthermore, we found remarkably older split dates for the shade-tolerant tree species with nonassisted seed dispersal than for light-demanding species with long-distance wind-dispersed seeds. Different recolonization abilities after recurrent cycles of forest fragmentation seem to explain why species with long-distance dispersal show more recent genetic admixture between the two clades than species with limited seed dispersal. Despite their old history, our results depict the African rainforests as a dynamic biome where tree species have expanded relatively recently after the last glaciation.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Árvores / Dispersão de Sementes / Floresta Úmida País/Região como assunto: Africa Idioma: En Ano de publicação: 2021 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Árvores / Dispersão de Sementes / Floresta Úmida País/Região como assunto: Africa Idioma: En Ano de publicação: 2021 Tipo de documento: Article