Your browser doesn't support javascript.
loading
Creating Dynamic Nanospaces in Solution by Cationic Cages as Multirole Catalytic Platform for Unconventional C(sp)-H Activation Beyond Enzyme Mimics.
Li, Kang; Wu, Kai; Lu, Yu-Lin; Guo, Jing; Hu, Peng; Su, Cheng-Yong.
Afiliação
  • Li K; School of Chemistry, South China Normal University, Guangzhou, 510006, China.
  • Wu K; MOE Laboratory of Bioinorganic and Synthetic Chemistry, Lehn Institute of Functional Materials, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, China.
  • Lu YL; MOE Laboratory of Bioinorganic and Synthetic Chemistry, Lehn Institute of Functional Materials, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, China.
  • Guo J; MOE Laboratory of Bioinorganic and Synthetic Chemistry, Lehn Institute of Functional Materials, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, China.
  • Hu P; MOE Laboratory of Bioinorganic and Synthetic Chemistry, Lehn Institute of Functional Materials, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, China.
  • Su CY; MOE Laboratory of Bioinorganic and Synthetic Chemistry, Lehn Institute of Functional Materials, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, China.
Angew Chem Int Ed Engl ; 61(5): e202114070, 2022 01 26.
Article em En | MEDLINE | ID: mdl-34779551
ABSTRACT
Herein we demonstrate that, based on the creation of dynamic nanospaces in solution by highly charged positive coordination cage of [Pd6 (RuL3 )8 ]28+ , multirole and multi-way cage-confined catalysis is accomplishable for versatile functions and anomalous reactivities with the aid of the biomimetic cage effect. The high cationic-host charges drive partial deprotonation of 24 imidazole-NHs on cage sphere alike imidazole-residuals in proteins, generating amphoteric heterogeneity in solution to enforce effective cavity-basicity against solution-acidity. Synergistic actions arisen from cage hydrophobicity, host-guest electrostatic interactions and imidazole-N coordination facilitate C(sp)-H activation and carbanionic intermediate stabilization of terminal alkynes to achieve unusual H/D-exchange and Glaser coupling under acidic conditions, and enable phase transfers of water-insoluble substrates/products/co-catalysts to make immiscible-phase and bi-phase catalysis feasible, thus providing a useful catalytic protocol to combine merits from homogeneous, heterogeneous, enzymatic and phase transfer catalysis.
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2022 Tipo de documento: Article País de afiliação: China

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2022 Tipo de documento: Article País de afiliação: China