Your browser doesn't support javascript.
loading
Short-Term Colony-Stimulating Factor 1 Receptor Inhibition-Induced Repopulation After Stroke Assessed by Longitudinal 18F-DPA-714 PET Imaging.
Barca, Cristina; Kiliaan, Amanda J; Wachsmuth, Lydia; Foray, Claudia; Hermann, Sven; Faber, Cornelius; Schäfers, Michael; Wiesmann, Maximilian; Zinnhardt, Bastian; Jacobs, Andreas H.
Afiliação
  • Barca C; European Institute for Molecular Imaging, University of Münster, Münster, Germany; ahjacobs@uni-muenster.de cristina.barca@uni-muenster.de.
  • Kiliaan AJ; Department of Medical Imaging/Anatomy, Radboud University Medical Center, Radboud, The Netherlands.
  • Wachsmuth L; Translational Research Imaging Center, University Hospital Münster, Münster, Germany.
  • Foray C; European Institute for Molecular Imaging, University of Münster, Münster, Germany.
  • Hermann S; European Institute for Molecular Imaging, University of Münster, Münster, Germany.
  • Faber C; Translational Research Imaging Center, University Hospital Münster, Münster, Germany.
  • Schäfers M; European Institute for Molecular Imaging, University of Münster, Münster, Germany.
  • Wiesmann M; Department of Nuclear Medicine, University Hospital Münster, Münster, Germany.
  • Zinnhardt B; Department of Medical Imaging/Anatomy, Radboud University Medical Center, Radboud, The Netherlands.
  • Jacobs AH; European Institute for Molecular Imaging, University of Münster, Münster, Germany.
J Nucl Med ; 63(9): 1408-1414, 2022 09.
Article em En | MEDLINE | ID: mdl-35115368
ABSTRACT
Studies on colony-stimulating factor 1 receptor (CSF-1R) inhibition-induced microglia depletion indicated that inhibitor withdrawal allowed the renewal of the microglia compartment via repopulation and resolved the inflammatory imbalance. Therefore, we investigated for the first time (to our knowledge) the effects of microglia repopulation on inflammation and functional outcomes in an ischemic mouse model using translocator protein (TSPO)-PET/CT and MR imaging, ex vivo characterization, and behavioral tests.

Methods:

Eight C57BL/6 mice per group underwent a 30-min transient occlusion of the middle cerebral artery. The treatment group received CSF-1R inhibitor in 1,200 ppm PLX5622 chow (Plexxikon Inc.) from days 3 to 7 to induce microglia/macrophage depletion and then went back to a control diet to allow repopulation. The mice underwent T2-weighted MRI on day 1 after ischemia and 18F-labeled N,N-diethyl-2-(2-[4-(2-fluoroethoxy)phenyl]-5,7-dimethylpyrazolo[1,5-α]pyrimidine-3-yl)acetamide (18F-DPA-714) (TSPO) PET/CT on days 7, 14, 21, and 30. The percentage injected tracer dose per milliliter within the infarct, contralateral striatum, and spleen was assessed. Behavioral tests were performed to assess motor function recovery. Brains were harvested on days 14 and 35 after ischemia for ex vivo analyses (immunoreactivity and real-time quantitative polymerase chain reaction) of microglia- and macrophage-related markers.

Results:

Repopulation significantly increased 18F-DPA-714 uptake within the infarct on days 14 (P < 0.001) and 21 (P = 0.002) after ischemia. On day 14, the ionized calcium binding adaptor molecule 1 (Iba-1)-positive cell population showed significantly higher expression of TSPO, CSF-1R, and CD68, in line with microglia repopulation. Gene expression analyses on day 14 indicated a significant increase in microglia-related markers (csf-1r, aif1, and p2ry12) with repopulation, whereas peripheral cell recruitment-related gene expression decreased (cx3cr1 and ccr2), indicative of peripheral recruitment during CSF-1R inhibition. Similarly, uncorrected spleen uptake was significantly higher on day 7 after ischemia with treatment (P = 0.001) and decreased after drug withdrawal. PLX5622-treated mice walked a longer distance (P < 0.001) and more quickly (P = 0.009), and showed greater forelimb strength (P < 0.001), than control mice on day 14.

Conclusion:

This study highlighted the potential of 18F-DPA-714 PET/CT imaging to track microglia and macrophage repopulation after short-term CSF-1R inhibition in stroke.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Radioisótopos de Flúor / Receptores de Fator Estimulador das Colônias de Granulócitos e Macrófagos / Acidente Vascular Cerebral Idioma: En Ano de publicação: 2022 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Radioisótopos de Flúor / Receptores de Fator Estimulador das Colônias de Granulócitos e Macrófagos / Acidente Vascular Cerebral Idioma: En Ano de publicação: 2022 Tipo de documento: Article